
CLOUD

ACCOUNTABILITY

PROJECT

D:D-6.2: Accountability Toolset Validation Report

Deliverable Number: D46.2 (D:D-6.2)

Work Package: WP 46

Version: Final

Deliverable Lead Organisation: Armines

Dissemination level: PU

Contractual Date of Delivery (release): 31/03/2016

Date of Delivery: 11/04/2015

Editors

Ali Kassem (Armines), Mario Südholt (Armines)

Contributors

Walid Benghabrit (Armines), Stefan Berthold (KAU), Carmen Fernandez-Gago (UMA), Chris-
tian Frøystad (SINTEF), Giorgos Giotis (ATC), Ali Kassem (Armines), David Núñez (UMA),
Andersen Santana De Oliveira (SAP), Tobias Pulls (KAU), Jean-Claude Royer (Armines),
Thomas Rübsamen (HFU), Philip Ruf (HFU), Mario Südholt (Armines), Vasilis Tountopou-
los (ATC)

Reviewers

Frederic Gittler (HP), Andersen Santana De Oliveira (SAP), Christoph Reich (HFU)

A4Cloud
www.a4cloud.eu
Accountability For Cloud and Other Future Internet Services

FP7-ICT-2011-8-317550-A4CLOUD

D:D-6.2: Accountability Toolset Validation Report

Executive summary

The main objective of the A4Cloud project is the provision of new processes, methods, tech-
niques, and tools for the construction of accountable Cloud architectures that increase the
awareness and level of enforcement of accountability properties in future Cloud architectures.

A main contribution to this end is the different (preventive, detective and corrective) accounta-
bility-related tools designed and implemented as part of the project. Some of these accountabil-
ity tools, such as the Accountability Primelife Policy Engine (A-PPLE), the Audit Agent System
(AAS), Data Transfer Monitoring Tool (DTMT) and the Incident Management Tool (IMT), play a
particular role because they handle accountability properties at runtime in an automated fash-
ion. The accountability properties are expressed using policies that are used to configure the
tools. These tools achieve a high degree of automation, all the while being able to enforce
diverse accountability properties at very different levels of Cloud architectures: they include
high-level properties such as intrusion attempts in personal data of Cloud Subjects, as well as
low-level properties, such as the identification of sensitive data in virtual machine snapshots at
the infrastructure level.

Due to the diversity of the tools, the different problems they resolve, the interactions between
actors (data subjects, data processors, etc.) and the data involved, the correct enforcement of
their accountability properties is difficult to validate. This is the case, in particular, because
most high-level accountability properties, for example “Make explicit by whom a subject’s data is
processed” (a transparency property in the sense of the attributes defined as part of WP C-2),
cannot be expressed in terms of the low-level accountability properties directly supported by any
single tool, that is the policies of any tool; instead, they have to be expressed by a combination
of low-level properties of different tools that correspond to chains of events handled by the tools
during runtime. The high-level property above, for example, can be handled by the A-PPLE tool
that can detect data processing operations, the AAS tool that constructs the evidence of which
actor performed the processing and and the IMT tool that sends corresponding notifications.

For these reasons, the runtime accountability tools have been chosen as subject of validation
in workpackage D-6. The validation has to satisfy three main objectives.

1. The validation methodology should support the validation of accountability properties that
are expressible in terms of accountability attributes, such as transparency and respon-
siveness, over the actions on tools and their effects on subjects and their resources.

2. It should be effective and practical, thus being useful to perform concrete validation tasks
on tool compositions that execute in real Cloud environments.

3. It should be extensible in order to accommodate new accountability properties, tools and
services.

Currently, there are no commercial or academic tools for the validation of accountability prop-
erties that are enforced by different tools. Existing validation approaches and tools (in a large
sense, covering formal verification techniques as well as general testing tools) are either specific
to individual tools, and support a small set of accountability properties or both. Moreover, no
existing tool meets the requirements stated above.

The main goals of WP D-6 are the provision of a validation methodology for A4Cloud tools,
corresponding tool support and its application to the validation of diverse accountability proper-
ties. Concretely, we have developed a validation methodology for accountability tools based on
accountability scenarios and the monitoring of temporal logic formulas. Our validation method is

FP7-ICT-2011-8-317550-A4CLOUD Page 2 of 94

mainly geared for tool developers and Cloud providers that want to integrate new accountability
tools into their ecosystems; it is, however, also useful to actors that have to audit or supervise
Cloud ecosystems.

As part of our work, two validation tools have been designed and implemented. First, the
Assertion Tool which enables validation scenarios to be executed and validated through inter-
actions with the A4Cloud tools. Concretely, the Assertion Tool supports the three objectives
through the following main characteristics:

• Accountability properties can be expressed in terms of a set of accountability predicates
that capture basic accountability-related actions of the A4Cloud tools and are used to built
complex accountability assertions that validate event chains handled by tool combinations.

• It allows the effective and practical execution of concise accountability validation scenar-
ios in order to validate flexible compositions of A4Cloud tool actions and accountability
properties.

• The validation method includes extensible interfaces for tools that may be used to inte-
grated tools external to A4Cloud.

Second, the Accountability Monitor, an extension of the Accountability Lab [dOSP+15], that
allows the distributed verification at runtime of temporal logic formulas. This tool is comple-
mentary to the Assertion Tool in that it supports more general specifications but lacks specific
support for fine-grained accountability properties of the A4Cloud tools.

The Assertion Tool and the Accountability Monitor are the first accountability validation tools
that are, respectively, based on validation scenarios and distributed temporal logic formulas.

To illustrate the work of the Assertion Tool, we have defined five validation scenarios that
allow different accountability properties of the A4Cloud tools to be validated. The defined val-
idation scenarios are derived from the wearable scenario which is developed and deployed by
the A4Cloud project as part of WP D-7. This scenario constitutes a realistic and topical sce-
nario, in which the involved business actors have to take the appropriate actions to ensure that
the collection and processing of the customers’ personal data are handled responsibly, based on
the established regulations and declared security organizational policies. For each scenario, we
provide a detailed description of how the scenario is used for validation of specific accountability
properties using the Assertion Tool. We also describe, for each scenario, the related account-
ability metrics, which are defined in WP C-5 to assist the assertion process, in particular, by
providing assurance of compliance. Metrics can provide a qualitative or quantitative overview
of how this assurance is achieved. These scenarios have then be used to automatically vali-
date the accountability properties of the tools in two concrete deployments of the supply chain
provided by partners ATC and HFU.

Concerning AccMon, we demonstrate how it can be used in collaboration with the Assertion
Tool to validate execution traces against a behavioral formula. More precisely, we provide first-
order distributed temporal formulas, which are related to some of the validation scenarios, and
we then check these formulas, using AccMon, on global execution dummy traces.

An advantage of AccMon over the Assertion Tool is that it can produces formulas which ex-
press what could happen if new events are appended in the future to the trace under verification.
While the Assertion Tool can only checks a trace of events up to the current state, so in case
of runtime validation it re-collects the the potential events every a given amount of time and
re-checks whether the related assertions are satisfied or not.

3

D:D-6.2: Accountability Toolset Validation Report

Contents

Executive Summary . 2
List of Figures . 6
List of Tables . 7
Glossary . 8

1 Introduction 10

2 Accountability Validation 15
2.1 The validation methodology . 15
2.2 Related work . 19

2.2.1 Scientific approaches to accountability validation 19
2.2.2 Accountability-aware tools . 21
2.2.3 Runtime verification . 22

2.3 Accountability assertions . 22
2.3.1 Motivation . 23
2.3.2 High-level accountability properties . 24
2.3.3 Accountability assertions . 25
2.3.4 Accountability predicates . 26
2.3.5 Expression of high-level properties in terms of low-level ones 29

2.4 Summary . 30

3 The Assertion Framework 31
3.1 Architecture of the assertion framework . 31
3.2 The Assertion Tool . 33

3.2.1 Features . 34
3.2.2 Architecture . 34
3.2.3 Implementation . 36

3.3 AccMon: Accountability Monitor . 44
3.3.1 Overview . 44
3.3.2 Architecture . 45
3.3.3 Implementation . 48
3.3.4 AccMon collaboration with the Assertion Tool 50
3.3.5 Screenshots . 52

3.4 A4Cloud toolkit . 52
3.4.1 Tool set subjected for validation . 52
3.4.2 Overview of the A4Cloud toolkit interactions 54
3.4.3 Data flows and data format . 55

FP7-ICT-2011-8-317550-A4CLOUD Page 4 of 94

D:D-6.2: Accountability Toolset Validation Report

3.4.4 High-Level description of the A4Cloud toolkit 58
3.5 Summary . 62

4 Validation Scenarios and Demo 63
4.1 Wearable scenario . 63
4.2 Validation scenarios . 67

4.2.1 Intrusion detection validation scenario . 68
4.2.2 Data retention validation scenario . 72
4.2.3 Data transfer across data centers validation scenario 77
4.2.4 Data transfer across hosts . 79
4.2.5 End user notification . 80

4.3 Summary . 84

5 Conclusion 85

A Examples of Evidence Records and Notifications 87

References 90

FP7-ICT-2011-8-317550-A4CLOUD Page 5 of 94

D:D-6.2: Accountability Toolset Validation Report

List of figures

1.1 High level view of the A4Cloud tools . 10
1.2 Overview of the validation methodology . 13

2.1 Overview of the validation methodology . 16
2.2 A4Cloud organizational lifecycle . 17
2.3 A4Cloud conceptual reference architecture . 18

3.1 Architecture of the assertion framework . 32
3.2 Architecture of the Assertion Tool . 35
3.3 Detailed Implementation-level architecture of the Assertion Tool 37
3.4 The grammar of ATTerm . 38
3.5 Screenshot of the GUI . 44
3.6 Screenshot shows the data retention scenario . 45
3.7 Screenshot shows A-PPLE tool . 46
3.8 AccMon global architecture . 47
3.9 AccMon internal architecture . 47
3.10 AccMon monitors overview . 52
3.11 AccMon traces . 53
3.12 AccMon – Assertion Tool plugin . 54
3.13 High level view of the A4Cloud tools . 55
3.14 Toolkit interaction diagram. 56
3.15 Data flow in supply chain . 59

4.1 The deployment of the A4Cloud tools for the wearable use case scenario. 64
4.2 The scenarios for the accomplishment of the wearable service 65
4.3 Intrusion detection audit task . 68
4.4 AT driving the intrusion detection validation scenario 70
4.5 AT checking assertions related to intrusion detection validation scenario 71
4.6 Data retention audit task . 73
4.7 AT driving data retention validation scenario . 75
4.8 AT checking assertions related to data retention 75
4.9 AT driving data transfer across data centers validation scenario 78
4.10 AT driving data transfer across hosts validation scenario 80
4.11 AT driving end user notification validation scenario 83

FP7-ICT-2011-8-317550-A4CLOUD Page 6 of 94

D:D-6.2: Accountability Toolset Validation Report

List of tables

2.1 Main high-level properties . 25
2.2 Assertion syntax . 25
2.3 Assertion predicates . 25
2.4 Subjects . 26
2.5 Resources . 26
2.6 Policies . 27
2.7 Transparency predicates: atomic predicates . 28
2.8 Responsiveness predicates . 29
2.9 Responsability predicates . 29
2.10 Transparency predicates: EventP . 30

3.1 REST interfaces offered by the Assertion Tool . 43

FP7-ICT-2011-8-317550-A4CLOUD Page 7 of 94

Glossary

A4Cloud toolkit

Subset of the A4Cloud tools that is subject to validation by the Assertion framework. The
A4Cloud toolkit consists of the runtime policy-based accountability tools, notably the Ac-
countability Primelife Policy Engine (A-PPLE), the Audit Agent System (AAS), Data Trans-
fer Monitoring Tool (DTMT) and the Incident Management Tool (IMT).

A4Cloud tools

Complete set of A4Cloud tools developed as part of the A4Cloud project.

Accountability (A4cloud definition from WP C-2)

Accountability for an organization consists of accepting responsibility for data with which it
is entrusted in a cloud environment, for its use of the data from the time it is collected until
when the data is destroyed (including onward transfer to and from third parties). It involves
the commitment to norms, explaining and demonstrating compliance to stakeholders and
remedying any failure to act properly.

Accountability assertion

A boolean expression representing an accountability property that can be validated using
the Assertion tool and the AccMon tool. Assertions are built up from predicates..

Accountability Monitor tool (AccMon)

The AccMon tool is one of the main components of the Assertion framework. It enables
the distributed verification of first-order temporal formulas at run time.

Predicates

Boolean term used to express the lower-level accountability properties directly supported
by the A4Cloud tools and the environment.

Accountability property

Property representing accountability obligations. Accountability properties range from
high-level properties over the accountability attributes to low-level tool-specific or environment-
specific properties.

Assertion framework

Software framework enabling the validation of the A4Cloud toolkit.

FP7-ICT-2011-8-317550-A4CLOUD Page 8 of 94

D:D-6.2: Accountability Toolset Validation Report

Assertion Tool

One of the main components of the Assertion framework. It orchestrates the validation of
an A4Cloud toolkit, in particular by running or observing validation scenarios and checking
assertions.

Evidence

Evidence is a collection of data, metadata, routine information and formal operations per-
formed on data and metadata which provide an attributable and verifiable account of the
fulfillment of relevant obligations. Evidence can be used to support an argument shown to
a third party about the validity of claims about the appropriate and effective functioning (or
not) of an observable system.

Validation scenario

A validation scenario is a narrative of foreseeable interactions between the A4Cloud tools
(including the Assertion Tool) and the environment. Scenarios are used to validate some
predefined accountability properties.

FP7-ICT-2011-8-317550-A4CLOUD Page 9 of 94

Chapter 1

Introduction

The A4Cloud project strives for new processes, methods, techniques, and tools for the construc-
tion of accountable Cloud architectures that increase the awareness and level of enforcement of
accountability properties in the future Cloud. Hence, the project has developed models for the
accountable Cloud and designed significant software support for accountability in the Cloud.

The different accountability-related tools designed and implemented as part of the project
are a cornerstone of this notion of the accountable Cloud. Figure 1.1 shows a high-level rep-
resentation of the A4Cloud tools, classifying them by their type of effects (columns) and by
functionality (blocks). Some of the tools, such as the contract and risk management tools are in-
tended to be used manually as advisory tools, while most can be used in an automated fashion
as part of Cloud ecosystems and infrastructures. Some enforcement and auditing tools, such
as the Accountability Primelife Policy Engine (A-PPLE), the Audit Agent System (AAS), Data

Transparency**
Log*

Remedia2on*&*
Redress*Tool**

Data*Track*

Incident*
Management*

Tool*

Preven&ve'

Data'Subject'Controls'

='UI'

Plug<in*for*
Policy*

Viola2on*

Contract'&'Risk'Management' Incident'Management''
&'Remedia&on'

Evidence'&'Valida&on'

Accountability*
Lab*

Privacy*Level*
Agreement*

Representa2on*
Tool*

Accountable*
Primelife*Policy*

Engine*

Data*Protec2on*
Impact*

Assessment*Tool**

Policy'Defini&on'&'Enforcement'

Asser2on*Tool*

Cloud*Offerings*
Advisory*Tool*

Data*Transfer*Control*
Tool*

Audit*Agent*System*

Detec&ve' Correc&ve'

AccMon*

Figure 1.1: High level view of the A4Cloud tools [GKP+15a]

FP7-ICT-2011-8-317550-A4CLOUD Page 10 of 94

D:D-6.2: Accountability Toolset Validation Report

Transfer Monitoring Tool (DTMT) and the Incident Management Tool (IMT), play a particular role
because they handle accountability properties at runtime in an automated fashion.

The properties are expressed using accountability policies that allow actions to be defined
that are executed in order to meet obligations triggered, for example, when resources of data
subjects are manipulated. Policies are used to configure the tools that then identify policy vio-
lations, construct evidence for such violations and notify them, for instance to the data subject
whose data has been modified.

The A4Cloud tools achieve a high degree of automation, all the while being able to enforce
diverse accountability properties at very different levels of Cloud architectures. They encompass
high-level properties, such as a data subject knows about all locations at which her data is
stored or intrusion attempts in personal data of Cloud Subjects. They also have to satisfy low-
level properties, such as the identification of sensitive data in virtual machine snapshots at the
infrastructure level.

Due to the diversity of the tools, the interactions between actors and the data involved, the
correct enforcement of accountability properties by the A4Cloud tools is difficult to be validated.
This is the case, in particular, because most high-level accountability properties, for example
“Make explicit by whom a subject’s data is processed” (a transparency property in the sense of
the attributes defined as part of WP C-2), cannot be expressed in terms of the low-level account-
ability properties directly supported by any single tool, that is the policies of any tool; instead,
they have to be expressed by a combination of low-level properties of different tools that corre-
spond to chains of events handled by the tools during runtime. The high-level property above,
for example, can be handled by the A-PPLE tool that can detect data processing operations, the
AAS tool that constructs the evidence of which actor performed the process

For these reasons, the runtime accountability tools have been chosen as subject of validation
in workpackage D-6. The validation has to satisfy three main objectives.

1. The validation methodology should support the validation of accountability properties that
are expressible in terms of accountability attributes, such as transparency and respon-
siveness, over the actions on tools and their effects on subjects and their resources.

2. It should be effective and practical, thus being useful to perform concrete validation tasks
on tool compositions that execute in real Cloud environments.

3. It should be extensible in order to accommodate new accountability properties, tools and
services.

Software validation, notably for the Cloud, can be performed in many different ways, no-
tably on the basis of automatized or manual formal approaches, such as formal proofs of
properties [BGRS15, BM14, CEH+05], or systematic runtime verification and testing meth-
ods [BB13a, GBT11, GI09]. However, currently, there are no commercial or academic tools
for the validation of accountability properties that are enforced by different tools. Existing valida-
tion approaches and tools (in a large sense, covering formal verification techniques as well as
general testing tools) are either specific to individual tools, support a small set of accountability
properties or both. Moreover, no existing tool meets the three requirements stated above.

The main goals of WP D-6 are the provision of a validation methodology for A4Cloud tools,
corresponding tool support and its application to the validation of diverse accountability prop-
erties. Concretely, we have developed a validation methodology for A4Cloud using runtime
verification based on accountability scenarios and temporal logic based formulas. Our valida-
tion method is mainly geared towards tool developers and Cloud providers that want to inte-

FP7-ICT-2011-8-317550-A4CLOUD Page 11 of 94

D:D-6.2: Accountability Toolset Validation Report

grate new accountability tools into their ecosystems. It requires, in particular, the definition of
validation scenarios and logic formulas that must be tailored towards the tools and execution
ecosystem in which the tools run. The method can, however, also be helpful to auditors and
regulatory/supervisory authority of Cloud ecosystems: in this case, predefined scenarios and
formulas can be harnessed that represent the accountability properties

As part of our work, two validation tools have been designed and implemented. First, the
Assertion Tool (AT) which enables validation scenarios to be executed and validated through
interactions with the A4Cloud tools. Concretely, the Assertion Tool supports the three objectives
through the following main characteristics:

• Accountability properties can be expressed in terms of a set of accountability predicates
that capture basic accountability-related actions of the A4Cloud tools and are used to built
complex accountability assertions that validate event chains handled by tool combinations.

• It allows the effective and practical execution of concise accountability validation scenar-
ios in order to validate flexible compositions of A4Cloud tool actions and accountability
properties. Accountability properties involving multiple tools are verified by checking ac-
countability assertions that are built from accountability predicates.

• The validation method includes extensible interfaces for tools that may be used to inte-
grated tools external to A4Cloud. The tool interfaces include dedicated validation inter-
faces to pass information in a controlled, notably secure and sanitized manner, directly
from the A4Cloud tools to the Assertion Tool.

Second, the Accountability Monitor, an extension of the Accountability Lab [dOSP+15], that
allows the distributed verification at runtime of temporal logic formulas. This tool is comple-
mentary to the Assertion Tool in that it supports more general specifications but lacks specific
support for fine-grained accountability properties of the A4Cloud tools.

The Assertion Tool and the Accountability Monitor are the first accountability validation tools
that are, respectively, based on validation scenarios and distributed temporal logic formulas.

To illustrate the work of the Assertion Tool, we have defined five validation scenarios that
allow different accountability properties of the A4Cloud tools to be validated. The defined val-
idation scenarios are derived from the wearable scenario which is developed and deployed by
the A4Cloud project as part of WP D-7. This scenario constitutes a realistic and topical sce-
nario, in which the involved business actors have to take the appropriate actions to ensure that
the collection and processing of the customers’ personal data are handled responsibly, based
on the established regulations and declared security organizational policies.

For each scenario, we provide a detailed description of how the scenario is used for valida-
tion of specific accountability properties using the Assertion Tool. We also describe, for each
scenario, the related accountability metrics, which are defined in WP C-5 to assist the assertion
process, in particular, by providing assurance of compliance. Metrics can provide a qualitative
or quantitative overview of how this assurance is achieved. These scenarios have then be used
to automatically validate the accountability properties of the tools in two concrete deployments
of the supply chain provided by partners ATC and HFU.

Overview of the validation methodology A high-level overview of the A4Cloud tools valida-
tion methodology is shown in Figure 1.2.

FP7-ICT-2011-8-317550-A4CLOUD Page 12 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 1.2: Overview of the validation methodology

The validation of the A4Cloud tools consists in providing guarantees on the correctness
of these tools once combined together. As part of our validation methodology, high-level ac-
countability properties are expressed in an extensible set of predefined assertions. They come
equipped with implementations in terms of lower-level and often tool-specific accountability pred-
icates that capture the accountability properties directly supported by the A4Cloud tools. The
set of tool-specific accountability predicates has been derived from a detailed analysis of the
accountability properties that can be directly enforced by the A4Cloud tools.

The validation itself consists in runtime verification of the executing A4Cloud system per-
formed on the basis of validation scenarios and validation specifications in form of temporal
logic formulas. The validation scenarios are declarative and executable (Java-based) specifi-
cations that are built from blocks representing tool interactions and accountability assertions.
The scenarios are then run by the Assertion Tool (AT). Logic-based formulas are monitored
continuously by the AccMon component of the AccLab tool suite.

During a run of a validation scenario, the AT tool will gather information from the A4Cloud
tools, essentially in the form of logs and notifications. This information provides the basis for the
decision whether accountability assertions are satisfied or not. Similarly, the AccMon component
gathers information about events generated by the A4Cloud tools in order to decide whether
its logic-based specifications are met during system runs. Finally, the tools provide validation
reports over the assertions or logic-based properties that have been satisfied or not.

Validation scenarios and demo As part of WP D-7 a wearable scenario has been developed
and deployed in order to demonstrate the accountability framework. This scenario involves
commercial and institutional actors, which have to take the appropriate actions to ensure that

FP7-ICT-2011-8-317550-A4CLOUD Page 13 of 94

D:D-6.2: Accountability Toolset Validation Report

the collection and processing of the customers’ personal data are handled responsibly, based
on the established regulations and declared security organizational policies.

In WP D-6, we have defined five validation scenarios, derived from the D-7 wearable sce-
nario, in order to demonstrate how the Assertion Tool can be used to validate the accountability
properties of the A4Cloud tools. For each scenario, we provide a detailed description of how
the scenario is used for validation of specific accountability properties using the Assertion Tool.
We also describe, for each scenario, the related accountability metrics, which are defined in W
PC-5 to assist the assertion process, in particular, by providing assurance of compliance. Met-
rics can provide a qualitative or quantitative overview of how this assurance is achieved. These
scenarios have then be used to automatically validate the accountability properties of the tools
in two concrete deployments of the supply chain provided by partners ATC and HFU.

AccMon and logical formulas We show how to use AccMon in order to validate the scenarios
and how to write the corresponding logical formula for each test. The formula are written is
FODTL (First order distributed temporal logic) and are checked on a global trace collected by
AccMon on different tools.

Relation with other workpackages The validation facilities developed in WP D-6 are related
to several other workpackages as detailed later in this deliverable.

First, the different A4Cloud tools that have subjected for validation in D-6 have been devel-
oped as part of other workpackages in streams C and D.

Furthermore, the Assertion Tool has been tested and used for validation within two OpenStack-
based Cloud environments, notably the environment developed for the A4Cloud demonstrator
as part of WP D-7.

Finally, the validation methodology is integrated with the A4Cloud architecture as defined by
WP D-2, harnesses accountability properties following the accountability model developed as
part of WP C-2, and uses metrics for validation developed in WP C-5.

Organization of the deliverable This deliverable is organized as follows.
We present our validation methodology, related work on the validation of accountability prop-

erties, as well as our notion of accountability assertions in Chapter 2.
Chapter 3 introduces the assertion framework and its architecture. It also presents the two

tools we have developed for validation, the Assertion Tool and Accountability Monitor. Finally,
we also review the A4Cloud tools that we have subjected to validation.

In Chapter 4, we provide the validation scenarios for tools validation. Then, we present the
A4Cloud tools validation we have performed, based on these validation scenarios, on the Cloud
infrastructures provided within the A4Cloud project, notably the demo infrastructure developed
as part of Workpackage D-7.

Chapter 5 presents a conclusion.
Finally, Appendix A shows the concrete examples of the data exchanged between the A4Cloud

tools.

FP7-ICT-2011-8-317550-A4CLOUD Page 14 of 94

Chapter 2

Accountability Validation

One of the main objectives of A4Cloud is to “enable Cloud service providers to give their users
appropriate control and transparency over how their data is used” [PTC+12]. The A4Cloud
partners provide different tools to assist Cloud stakeholders to meet this objective. In order to
be sure that the correctness of the A4Cloud tools is met once combined together, their correct
enforcement of accountability properties has to be validated. Validation is defined in the IEEE
standard glossary of software engineering terminology as: “The process of evaluating a system
or component during or at the end of the development process to determine whether it satisfies
specified requirements” [IEE90].

As part of the WP D-6, the partners have developed a validation methodology based on
the runtime verification of accountability properties based on two different kinds of specification.
First, declarative, executable validation scenarios that define tool interactions, as well as, ac-
countability assertions support the verification of accountability properties. Second, temporal
logic formulas can be monitored and verified during execution. The validation methodology can
be harnessed by tool developers at the end of the tool development phase as well as Cloud
service providers during the setup or validation runs of their Cloud ecosystems.

This chapter is structured as follows. The validation methodology is presented in Section 2.1.
Related work on the validation of accountability properties is discussed in Section 2.2. Account-
ability assertions that are used to express accountability properties in validation scenarios are
introduced in Section 2.3. Finally, a summary is presented in Section 2.4.

2.1 The validation methodology

An overview of the A4Cloud tools validation methodology is shown in Figure 2.1.
The validation of the A4Cloud tools consists in providing guarantees that the composition

of these tools preserve accountability properties. Generally speaking, accountability properties
range from high-level accountability properties over the accountability attributes defined in work-
package C-2 [FP+14], notably transparency, responsiveness, responsibility and remediability to
low-level tool-specific or environment-specific properties, for example, relative to the OpenStack
Cloud infrastructure environment.

As part of our validation methodology high-level accountability properties are expressed in
terms of an extensible set of predefined accountability predicates that represent lower-level and

FP7-ICT-2011-8-317550-A4CLOUD Page 15 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 2.1: Overview of the validation methodology

often tool-specific accountability predicates. These predicates3 capture the accountability prop-
erties directly supported by the A4Cloud tools. The predicates enable, in particular, the formula-
tion of the accountability properties that are defined using policies by the runtime accountability
tools AAS, A-PPLE, DTMT and IMT. The set of tool-specific, notably policy-defined, account-
ability predicates has been derived from a detailed analysis of the accountability properties that
can be directly enforced by the four A4Cloud runtime accountability tools.

The validation itself consists in runtime verification of the executing A4Cloud system per-
formed on the basis of validation scenarios and validation specifications in form of temporal
logic formulas. The validation scenarios are declarative and executable (Java-based) specifi-
cations that are built from blocks representing tool interactions and accountability assertions.
The scenarios are then applied by the Assertion Tool in one of two modes. In the “scenario
runner” mode, the AT executes the tool interactions that are part of a scenario and validates
the accountability assertions when they are encountered as part of the scenario. In the “sce-
nario matching” mode, the AT verifies the accountability assertions continuously while observing
the autonomously-executing system. Logic-based formulas are monitored continuously by the
AccMon component of the AccLab tool suite.

At the end or during the execution and matching of a validation scenario, the AT tool will
gather information, essentially in the form of logs and notifications, from the A4Cloud tools. This
information provides the basis for the decision whether accountability assertions are satisfied
or not by the run of the validation scenarios. Similarly, the AccMon component gathers infor-

FP7-ICT-2011-8-317550-A4CLOUD Page 16 of 94

D:D-6.2: Accountability Toolset Validation Report

Handle'
Excep,ons'

Purpose(

Operate(

Figure 2.2: A4Cloud organizational lifecycle (from WP D-2 [GKP+15b])

mation about events generated by the A4Cloud tools in order to decide whether its logic-based
specifications are met during system runs.

Finally, during execution and at the termination of validation scenarios as well as during the
monitoring of logic-based accountability properties the two tools provide validation reports over
the assertions or logic-based properties that have been satisfied or not.

Validation and the A4Cloud architecture and lifecycle

The AT and AccMon tools serve to validate tools during their development by tool developers
or during their execution by Cloud providers or auditors. Both tools integrate smoothly into the
organizational lifecycle, see Figure 2.2. They operate at the end of the analysis and design
phase and during the operational phase, in particular, in order to detect exceptional situations;
both then feed into a later analysis and design phase in order to improve the accountability
properties of the Cloud ecosystem.

In terms of the A4Cloud conceptual reference architecture, see Figure 2.3, the AT and Ac-
cMon tools principally need direct input about the resources and computations performed by
the Cloud service provider, as well as, information about Cloud subjects and Cloud service cus-
tomers. Information from regulatory authorities, as well as, contracts established using Cloud
brokers is also relevant as long as it is represented in machine-readable form, for example, using
policies.

Metrics for accountability validation

Metrics can assist the assertion process, in particular, by providing assurance of compliance.
Metrics can provide a qualitative or quantitative overview of how this assurance is achieved.

Supplementary to the validation methodology, it is possible to further assess the fulfillment
of assertion requirements through the evaluation by means of accountability metrics. In the
context of A4Cloud, measurement techniques for assessing the concept of Accountability have
been developed as part of WP C-5, which led to a catalog of accountability metrics [NFGA+14].
The catalog is composed of 39 metrics, organized in three categories:

• Verifiability and Compliance. This category groups metrics devoted to demonstrating com-
pliance to good practices and regulations.

FP7-ICT-2011-8-317550-A4CLOUD Page 17 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 2.3: A4Cloud conceptual reference architecture (from WP D-2 [GKP+15b])

• Transparency, Responsibility and Attributability. This group of metrics is related to mea-
suring the characteristics about the internal processes that provide Accountability.

• Remediability and Incident Response. This category groups metrics encompasses met-
rics related to remediation, redress, and incident response.

This catalog supports the demonstration that proper practices and mechanisms for privacy, se-
curity and information governance are in place.

Once suitable metrics are identified they can in principle be used in the process of account-
ability validation. For each validation scenario, relevant metrics can be defined. This includes
defining the criteria of the results of the metric that support the validation of accountability prop-
erties. By using data derived from the execution of the validation scenario we could proceed to
apply the metrics and determine whether the validation scenario are validated.

However, it is important to remark that the nature of the metrics in WP C-5 is oriented towards
the evaluation of organizational and governance aspects, rather than automated measurements.
For this reason, most of them are not directly applicable in the validation scenarios. These
scenarios model several expected outcomes of the A4Cloud tools, following a “Detect and Notify”
pattern: a particular set of tools detects some deviation of the normal behavior and notifies
the corresponding stakeholder. The Metrics catalog of WP C-5, because of its nature, is not
concerned with the Detection part. However, there are relevant metrics for the Notification part,
which can be useful as a complement to the performed validation.

For example, the following metric describes quantitatively how timely the notifications are
delivered to interested stakeholders (e.g., end-users, administrators, etc)

• Input: This metric is computed using the following parameters:

FP7-ICT-2011-8-317550-A4CLOUD Page 18 of 94

D:D-6.2: Accountability Toolset Validation Report

– N – Total number of notifications for a given period of time

– Ai – Time of the i-th notification during the given period of time, expressed in UNIX
time

– Bi – Time of the i-th incident during the given period of time, expressed in UNIX time

• Formulation and output: Output =

N∑
i=1

(Ai−Bi)

N

This metric can be used in runtime-based validations, such as our validation methodology. We
will describe the metrics related for each validation scenario in Chapter 4.

Finally, it should be noted that the metrics described in this document are not intended to be
integrated in the runtime execution of the validation process, but are rather meant to be means
to enrich the validation results.

2.2 Related work

The assertion tool uses a validation scenario-based methodology to validate at runtime ac-
countability properties of the policy-enforcement A4Cloud tools. Currently, no tools (commercial
or otherwise) exist for the validation of tool sets for accountability. Existing approaches for the
testing and monitoring of accountability properties are limited to individual tools. Furthermore,
the Assertion tool is unique in providing a flexible assertion language that allows the defini-
tion of a wide range of accountability properties, including transparency, responsiveness and
responsibility properties.

In this section, we present related work which deals with the validation of accountability
properties and scenario testing. We classify the different approaches in three groups:

• Scientific approaches concerned with the verification of accountability properties, see Sec-
tion 2.2.1.

• Accountability-aware tools which collect logs and evidence to support accountability or
verify accountability properties, see Section 2.2.2.

• Runtime verification and monitoring of logical formula, see Section 2.2.3.

2.2.1 Scientific approaches to accountability validation

Scientific approaches to the validation of accountability properties either come in the form of
formal approaches or runtime verification techniques. However, all academic approaches are
limited with respect to the validation requirements of the A4Cloud tools because of two main
reasons. First, none of them considers the accountability properties of tool chains and diverse
sets of accountability properties. All existing approaches only consider single tools and small
sets of properties. Second, as to be best of our knowledge, none of the formal approaches to ac-
countability properties has been applied to large-scale real-world systems as those considered
in the A4Cloud project. Similarly, the scientific approaches to the validation of accountability
properties have not been applied to real-world systems but have only been evaluated on some
small systems or system components.

FP7-ICT-2011-8-317550-A4CLOUD Page 19 of 94

D:D-6.2: Accountability Toolset Validation Report

Formal approaches. In the context of work on formal approaches to accountability, Küsters
et al. [KTV10] have been proposed formal definitions for accountability and verifiability and rec-
ognized verifiability as a weaker variant of accountability. The authors provide two definitions of
accountability: a symbolic one in the Dolev-Yao model and a computational one with a crypto-
graphic model, and demonstrate the applicability of their approach by analyzing several cryp-
tographic protocol specifications. However, their framework needs to be instantiated for each
application by identifying relevant goals that are to met and is therefore very unwieldy.

Mazza et al. [EM11] have proposed a formal framework for specifying and reasoning about
logs as electronic evidence. The authors consider a decentralized logs, and an analysis method,
defined prior to legal disputes, to determine liability of the parties for predefined misbehaviors.
Moreover, they study how previous results can be used in the incremental analysis of larger
inputs to obtain precise or approximated results, and illustrate their approach with an example
of a travel arrangement service. The presented framework allows to specify liability, claims, and
logs as electronic evidence. It uses the B-method, a methodology that focuses both on data and
behaviors, and which is referenced as a standard in industry. Note that, the authors assume
that origin, authentication, and integrity properties hold for messages; however, they claim that
the framework can easily be adapted to relax these assumptions.

Work based on runtime validation. Several researchers have investigated runtime validation
for accountability or related properties.

Yao et al. [YCW+10, YCW+12] have proposed an approach for bringing accountability to the
cloud. The proposed approach consists of a novel design to achieve trustworthy Service Ori-
ented Architectures, identifying and associating failures and misbehaviors with the correspond-
ing responsible entities. Administrated by a new service the system promises accountability
as a service. The authors focused on evidence provision for accountability of cloud services.
They introduced their concept of accountability, which includes attribution as a major task, and
with the core functionalities: logging, monitoring and auditing, and dispute resolution. System
monitoring and auditing includes a logic mechanism that verifies compliance based on analy-
sis of pre-established Service Level Agreements (SLAs) as well as a business operation logic
that defines the correct flow between services. Policy definitions are also introduced to fill the
gap between SLA and business logic definitions and monitoring mechanisms used to evaluate
service legitimacy. However, they only addressed business exchanges at the SaaS level, and
accountability issues related to personal data handling are not considered.

Wang and Zhou [WZ10] have proposed a collaborative monitoring mechanism to support
accountability for a multi-tenant database with a centralized external service. They proposed an
accountability service, namely, a third party service which allows clients to verify the correctness
of the data and the execution of their business logic in the cloud platform. The third-party service
is responsible for intercepting endpoints interfacing the client and the service. It captures data
relevant to the SLA contract and uses the Merkle B-tree method [LHKR08] to authenticate the
data stored in the database. The paper concentrates on the centralized service, however it
also considers a distributed version. This approach was discussed and evaluated with through
experiments in Amazon EC2 cloud service.

More recently, Masmoudi et al. [MLK14] have proposed a multi-tenant services monitoring
approach that keeps monitoring service execution at runtime and detecting privacy violations.
The proposed approach based on patterns as abstract model which provide reusable and suit-
able description of multi-tenant services based on accountability rules. The considered rules are
specified using simple Event Condition Action model, and are enforced using Aspect Oriented

FP7-ICT-2011-8-317550-A4CLOUD Page 20 of 94

D:D-6.2: Accountability Toolset Validation Report

Programming. In addition, a Pattern Matching algorithm is defined for the appropriate multi-
tenant accountability pattern selection. The authors also have proposed a middleware layer
to implement their approach into cloud architecture. Later, they have extended their approach
in [MSLK15] by enabling the post-violation diagnosis of multi-tenant services accountability. It is
based on service patterns as an abstract model to provide reusable and suitable description of
the different characteristics of the analysis process, and an algorithm for pattern selection and
instantiation.

Sundareswaran et al. [SSL12] have proposed an end-to-end decentralized accountability
framework, namely Cloud Information Accountability (CIA), to keep track of the user data usage
in the cloud. The authors suggest an object-centered approach that packs the logging mech-
anism together with users’ data and policies. Thus a data owner can track whether or not the
service-level agreements are satisfied, but also can enforce access or usage control. They con-
sider two possible modes for auditing: push mode (where owners receive logs) and pull mode
(where auditors extract logs). The authors have tested their framework by setting up a small
cloud, using the Emulab testbed [Tes]. The results show the efficiency, scalability and granular-
ity of the approach. However, they do not propose an explicit accountability definition; the paper
focuses on data accountability and a technical framework to achieve it.

Naskos et al. [NSKG15, NSG+15] presents a model-driven approach for the dynamic pro-
visioning of cloud resources in an autonomic manner. The proposed approach is based on the
probabilistic model checking of Markov Decision Processes (MDPs) at runtime. The MDPs are
dynamically instantiated at runtime using logs and measurements, then the data are verified
using the PRISM model checker for the provisioning/deprovisioning of cloud resources. The
authors have been experimentally evaluated their approach using a NoSQL database cluster
running on a cloud infrastructure.

2.2.2 Accountability-aware tools

While there are no tools for the validation of accountability properties of tool chains as enabled
by the A4Cloud validation methodology, a small number of tools helps in collecting logs and
evidences, or in performing data monitoring and auditing.

HyTrust [HyT] is a commercial virtual appliance tool focusing on cloud auditing and policy
enforcement. It is a log report and policy enforcement tool, which sits between the virtual infras-
tructure and its administrators. More precisely, HyTrust intercepts all the administrative requests
for a virtual infrastructure, and determines if these requests are in accordance with the policies
defined by the virtual infrastructure manager, before permitting or denying it accordingly. By
logging all requests, records are produced that can be used for regulatory compliance and au-
diting, troubleshooting, and forensic analysis. HyTrust addresses the low-level system layer of
accountability in the cloud. This tool does not perform any validation by itself but provides infor-
mation which may be useful for validation. Furthermore, it focuses on the virtualization layers
and does not support higher-level accountability properties.

Haeberlen et al. [HARD10] have been introduced the accountable virtual machines (AVMs),
which allows to audit the execution of a system in a distributed context. Precisely, AVMs can
execute binary software images in a virtualized copy of a computer system, and record non-
repudiable information that allows auditors to subsequently check whether the software behaved
as intended. To demonstrate the effectiveness of AVMs in practice, the authors have designed
and implemented a prototype monitor based on VMware Workstation, and used it to detect
several existing cheats. This tool’s runtime verification capabilities are much more limited in

FP7-ICT-2011-8-317550-A4CLOUD Page 21 of 94

D:D-6.2: Accountability Toolset Validation Report

scope than what is required by the A4Cloud tools.
Massonet et al. [MNP+11] have presented a monitoring and audit logging system for data

location compliance in federated cloud infrastructure. The proposed system allows the Data
Controller to specify his requirements for data geolocation, enabling the Virtual Execution En-
vironment Manager to place the virtual machines according to these requirements. However,
this system only addresses the IaaS layer and does not provide a way to map the data trans-
fers across the different layers. Indeed, data movements at the PaaS and SaaS levels are not
detectable by this system. This tool provides services similar to A4Cloud’s DTMT tool but does
not help in validating accountability tools.

In context of cloud accountability, we can find projects such as, the currently suspended
project, CloudAudit1 which aims at providing the technical foundation to enable transparency
and trust in private and public cloud systems. To this end, CloudAudit targets a common inter-
face that allows enterprises and cloud providers to automate the audit, assertion, and assurance
of their infrastructure (IaaS), platform (PaaS), and application (SaaS) environments and allow
authorized consumers of their services to do likewise via an open, extensible and secure inter-
face and methodology.

2.2.3 Runtime verification

AccMon is a monitoring framework for asynchronous distributed systems which can be (in-line
and out-line). AccMon is based on a logic called FO-DTLF (First Order Linear Distributed
Temporal Logic over Finite states), which is a mix between LTLFO [BKV15] and DTL [SVAR04].
FOTL is very expressive language however it is an undecidable logic [DFK06]. Just as FOTL,
FO-DTLF is not decidable and even not recursively enumerable (due to the use of functions and
interpreted predicates). FO-DTLF is more expressive than FOTL since it includes distributed
operators.

In [SVA+06] authors present a specific temporal logic MTTL, to express properties of asyn-
chronous multi-threaded systems. The proposed monitoring procedure takes as input a for-
mula and a partially ordered execution of a parallel asynchronous system. Then, it determines
whether there are executions that violate the formula. However, this procedure is restricted to
safety formulas, while AccMon can also monitors liveness formulas (which are the main foucus
of AccMon). Another difference is that the authors of [SVA+06] assume a global trace, while we
consider the possibility that a system may not collect a global trace.

Other works like [GMM06] target distributed systems, but do not focus on the communi-
cation overhead that may be induced by the monitoring. In [SS14], the authors tackle the
runtime verification in distributed asynchronous systems. The proposed approach is an ex-
tension of PTLTL [SVAR04] and LTL3 [BLS11]. They monitor LTL formula over a distributed
system using bushi automaton. While, AccMon monitors formulas with the first order using
progression technique. For more details on runtime verification the reader can refer to the sur-
veys [GP10, BB13b].

2.3 Accountability assertions

In this section, we present a notion of accountability assertions that supports the declarative
definition of accountability properties enforced by the A4Cloud tools and the environment they

1http://cloudaudit.org/CloudAudit/Home.html

FP7-ICT-2011-8-317550-A4CLOUD Page 22 of 94

D:D-6.2: Accountability Toolset Validation Report

are executing in. Accountability assertions are constructed from atomic ones that reify account-
ability properties that are directly supported by the A4Cloud tools and that can be combined
to construct higher-level properties. To this end, we have performed a detailed analysis of the
accountability properties of the tools related to policy enforcement, resulting in a complete set
of predicates capturing these properties.

We first motivate our notion of accountability assertions in Section 2.3.1. Based on the ac-
countability attributes from workpackage C-2, we then discuss fundamental high-level account-
ability properties that we would like to express in terms of assertions in Section 2.3.2. In Sec-
tion 2.3.3 we introduce a general framework for the definition of accountability assertions. Gen-
eral accountability predicates and the tool-specific predicates are presented in Section 2.3.4.
Finally, we illustrate in Section 2.3.5 how informal high-level properties can be expressed in
terms of low-level ones.

2.3.1 Motivation

Accountability statements often consist of high-level informal properties, for example, that a user
being informed about all locations where her data is stored (a transparency property), that a data
removal request will be fulfilled after at most a certain time period (a responsiveness property),
or that Cloud actors responsible for the manipulation of data can be identified (a responsibility
property). Definitions of accountability properties at such a high-level of abstraction are fre-
quently mandatory in order to inform many Cloud actors about accountability-related issues and
enable them to make informed decisions concerning their data. This is frequently the case no-
tably for most Cloud subjects that use the Cloud without having any technical background and
Cloud auditors that have to assess the general accountability properties of Cloud ecosystems.

However, accountability properties have to be defined, configured, analyzed and enforced
at the level of architectures, applications and infrastructures with the help of tools that oper-
ate at these levels. This implies that accountability properties have to be expressed frequently
using rather low-level existing mechanisms and techniques that ensure security and privacy
properties, such as access control, encryption of communication and data stores, and the cre-
ation of copies of data bases or virtual machines. Similarly, evidence relevant for determining
whether accountability properties are satisfied has to be gathered and expressed in terms of the
resources manipulated at the same levels.

Consequently, an approach to the validation of accountability properties that are enforced
using tools operating over real software infrastructures should at least enable the definition
of accountability properties directly at the level of tools and infrastructures and allow for the
composition of those accountability properties in order to express higher-level properties.

Our approach meets these requirements respectively by means of the following concepts:

• A set of high-level accountability properties that are grounded in the accountability at-
tributes defined in WP C-2. They are (informally) defined without reference to tool-specific
or implementation-specific properties.

• A set of precisely-defined low-level accountability predicates that make explicit specific
properties of tools, applications and infrastructures.

• Means for the definition of the high-level predicates in terms of the low-level ones.

The construction of high-level accountability assertions in terms of accountability predicates
is done at two levels:

FP7-ICT-2011-8-317550-A4CLOUD Page 23 of 94

D:D-6.2: Accountability Toolset Validation Report

• Accountability predicates can be composed with one another.

• Accountability predicates can be used as part of validation scenarios (see Chapter 4) that
enable complex accountability properties to be defined using a programming-based rep-
resentation. At this level, predicates and predicate compositions can be orchestrated as
part of sequential compositions and loops. Furthermore, additional orchestration opera-
tions, such as parallel compositions, can be defined and added to the assertion library
harnessed by the Assertion tool.

From a programming language viewpoint this framework satisfies the three following design
principles.

• It provides uniform means to capture basic, that is tool-specific and infrastructure-specific,
accountability properties.

• it reuses well known mechanisms for the definition of high-level properties: predicate com-
position, object-oriented abstraction mechanisms and the program-based orchestration.

• it provides a very flexible definition of accountability properties, notably through the sim-
ple manner in which new accountability predicates can be defined, in which new complex
compositions can be programmed, and the possibility to extend the orchestration possibil-
ities of accountability predicates.

In the remainder of this chapter we discuss, in Section 2.3.2, high-level accountability proper-
ties conforming to the accountability model introduced in WP C-2. In Section 2.3.3 we introduce
accountability assertions and how they are defined. Finally, in Section 2.3.4, we present the
predicates that directly capture the accountability properties of A4Cloud tools for policy enforce-
ment as well as the infrastructure they are executing in.

2.3.2 High-level accountability properties

As part of WP C-2 [FP+14], a general model for accountability (including a set of fundamental
accountability attributes) as well as a general accountability framework has been devised. In the
remainder of this section, we present examples of high-level accountability properties.

In C-2 ([FP+14], Section 5), the A4Cloud model has been characterized using four key
attributes:

• Transparency: provide visibility of norms, behavior and compliance of behavior with re-
spect to norms.

• Responsiveness: take into account input from external stakeholders and respond to their
requests.

• Responsibility: individuals and organizations being assigned to take action to comply with
norms.

• Remediability: take corrective action or provide a remedy in case of failure of compliance
with a norm.

These attributes give rise to a number of high-level accountability properties: Table 2.1
shows a list of examples of fundamental high-level properties whose correct handling by the
A4Cloud tools we are interested in.

FP7-ICT-2011-8-317550-A4CLOUD Page 24 of 94

D:D-6.2: Accountability Toolset Validation Report

Attribute Property
Transparency Are the policies governing data storage and processing accessible and

modifiable?
Where is a Cloud Subject’s data located?
Where and by whom is a Cloud Subject’s data processed?

Responsiveness Does evidence include the source of the request?
Are system components connected?
Is an action performed in a timely manner?

Responsibility Do policies and evidence make explicit responsibility of accountability-
related decisions?
Can responsibility for data manipulations be tracked?

Remediability Are Cloud actors correctly notified of accountability issues?
Do policy violations result in corrective actions?

Table 2.1: Main high-level properties

Assertion = true | false | Predicate | Task

Task = Assertion ; Assertion

Table 2.2: Assertion syntax

Predicate = ID ({ Subject | Resource })
| true | false | not Predicate
| Predicate and Predicate | Predicate or Predicate
| TransparencyP | ResponsivenessP | ResponsabilityP

Table 2.3: Assertion predicates

2.3.3 Accountability assertions

Accountability assertions constitute one of the core concepts of our approach to the expression
and validation of accountability properties. Built from accountability predicates they are the
means to express concrete accountability properties of tools and infrastructures. As, essentially,
compositions of predicates, they allow complex properties to be expressed and are called as
part of validation scenarios that permit to relate accountability properties to tool interactions.

More precisely, accountability assertions, see Table 2.22, are built from atomic accountability
predicates (non-terminal Predicate) that represent basic mostly tool-specific or infrastructure-
specific accountability properties. They may also form tasks, that is, sequences of assertions
(that are interpreted as conjunctions of assertions).

Accountability predicates, see Table 2.3, generally relate a name (ID) to a boolean expres-
sion over subjects and resources. In order to formulate specific accountability properties we
provide general, policy, and tool-specific predicates that can be classified to the accountabil-
ity attributes (Transparency, Responsiveness and Responsability) as introduced in the previous
section, see Section 2.3.4.

2Here and in the following syntax definitions we use extended Backus Naur form (EBNF) that expresses repetition
by curly brackets and optionality by square brackets.

FP7-ICT-2011-8-317550-A4CLOUD Page 25 of 94

D:D-6.2: Accountability Toolset Validation Report

Subject = Actors | Tool | Env
Actors = subject | consumer | provider | carrier

| auditor | supervisor | controller | processor
Tool = a-pple | aas | dtmt | imt | . . .
Env = OpenStack | Service | OS

Table 2.4: Subjects

Resource = ToolRes | EnvRes | Permission
ToolRes = PolicyFile | DB | Evidence | Notification | . . .
EnvRes = Location | Time | OpenStackRes | . . .
OpenStackRes = VM | DataVolume | Snapshot
Permission = read(Resource) | write(Resource) | exec(Resource)

Table 2.5: Resources

Assertions are defined over operations that are performed by subjects, that are Cloud actors,
tools or computational services provided from some (OS or service-oriented) environment, see
Table 2.4.

Finally, subjects use and manipulate resources, which include tool resources, environmental
resources, such as resources from the underlying OS, as well as permissions, see Table 2.5.

2.3.4 Accountability predicates

Accountability predicates capture basic general, policy or tool-specific accountability properties.
In the following these predicates are classified according to the accountability attributes they
provide information about.

Some predicates are general in that they are meaningful independent from specific tools and
may be used in the context of several tools. This is the case, for instance, for predicates providing
information about access of subjects to resources, or predicates that limit the satisfaction of
other predicates over time.

However, several predicates are meaningful only when considered in relation to actions by
specific tools or a small number of different tools. The accountability predicates we consider
have been derived from a detailed analysis of the accountability-specific extensions provided
by the policy-enforcing A4Cloud tools: this analysis has resulted in a list of predicates for the
A4Cloud tools.

In the following sections, we note predicates that are specific to a particular A4Cloud tool
by qualifying the predicate name by the name of the corresponding tool. Finally, accountability
predicates may refer to rules established by accountability policies (the predominant case in the
A4Cloud project).

Predicates for accountability policies

Accountability properties are defined within the A4Cloud project using policies which are ex-
tensions of policies defined as part of the PrimeLife EU project which in turn are extensions of
XACML policies [dOSoTP+15b].

FP7-ICT-2011-8-317550-A4CLOUD Page 26 of 94

D:D-6.2: Accountability Toolset Validation Report

Policy = ID | policy(Tool, ID, { Rule })
Rule = ID | rule(ID, { Target }, { ProvAction }, Cond, { Obligation }, Effect)
Target = Subject | Resource
ProvAction = pacReveal(Resource) | pacSign(Resource)
Obligation = Trigger:Action
Effect = Permit | Deny
Trigger = trPolicyViolation(Policy) A4CLOUD

| trDataCollection(Subject, Resource) A4CLOUD
| trComplaint(Subject, Resource) A4CLOUD
| trEvidenceRequestReceived(Evidence) A4CLOUD
| trDataSubjectAccess(Resource, Resource) A4CLOUD
| trPORRequestReceived(Subject, Resource, Resource) A4CLOUD
| trUserRegistration(Subject) A4CLOUD
| trAtTime(Time, Duration)
| trPersonalDataAccessedForPurpose(Resource, Resource, Duration)
| trPersonalDataDeleted(Resource, Duration)
| trPersonalDataSent(Resource, Resource, Duration)
| trDataSubjectAccess(Resource, Resource)

Action = acEncrypt(Resource) A4CLOUD
| acAudit(Policy) A4CLOUD
| acEvidenceCollection(Evidence) A4CLOUD
| acPORetrievability(Resource) A4CLOUD
| acRequestConsent(Subject, Resource) A4CLOUD
| acDeletePersonalData(Resource)
| acAnonymizePersonalData(Resource)
| acNotifyDataSubject(Resource, Resource)
| acLog(Policy)
| acEncrLog(Policy)

Table 2.6: Policies

For the purpose of validation, we define predicates over policies as shown in Table 2.6. This
definition capture the main concepts of the A4Cloud policies as used by the A-PPLE and AAS
tools. Besides standard XACML authorization decisions (Permit, Deny), these predicates prin-
cipally enable the expression of the A4Cloud-specific rules, that is, that use the policy elements
marked by A4CLOUD in the table. These have been defined as part of the policy extensions
for the A4Cloud tools as part of workpackages D-3 and C-8. The remaining entries are defined
in the reference documents respectively for XACML and the Primelife Policy Language. The
actions ProvActions, for example, designate the Primelife actions for the divulgation of addi-
tional information about a resource (pacReveal) and the assertion of an identity through signing
(pacSign).

Note that the syntax represents policies as one term starting with the constructor policy,
which also includes an identifier and the corresponding tool. The A4Cloud tools, A-PPLE in par-
ticular, can provide information, for example through logs, about almost all internal processes
that can be used for validation purposes. The Assertion Tool therefore allows validation scenar-
ios to be defined in terms of all constituent predicates of policies. It is, for instance, possible
to refer to the fact that a policy Pol has been violated by directly referring to the predicate

FP7-ICT-2011-8-317550-A4CLOUD Page 27 of 94

D:D-6.2: Accountability Toolset Validation Report

ToolP toolInstalled(Tool | Resource)
toolConfigured(Tool | Resource)
userRegistered(Tool | Resource, Subject)

PolicyP policyInstalled(Tool, Policy)
policyInstalled(Tool, Policy, Subject)
policyInstalled(Tool, Policy, Subject, Resource)
policyAaccessible(Tool, Policy)
policyModified(Tool, Policy)
policyViolation(Tool, Policy)

SubjectResourceP login(Subject, Resource)
access(Subject, Resource)
located(Subject, Location)
located(Resource, Location)
exists(Resource, Duration)

Table 2.7: Transparency predicates: atomic predicates

trPolicyViolation(Pol), or that a data R (a resource) has been collected for a subject S by
referring to the predicate trDataCollection(S, R) that are part of the A4Cloud triggers de-
fined for policies in Table 2.6. The trigger trPolicyViolation(Pol) may be followed by the
actions acEvidenceCollection(E) and acNotifyDataSubject(R1, R2) to respectively reflect
the facts that the evidence related to the violation E has to be collected and the corresponding
Data Subject(s) be notified about the violation that occurred while the resources R1 and R2
were processed. This will result in the following obligation:

trPolicyViolation(Pol): acEvidenceCollection(E)
and acNotifyDataSubject(R1, R2)

General accountability predicates

Apart from the predicates that constitute policies, a set of general predicates capture accountability-
relevant actions by the A4Cloud tools.

Table 2.7 shows the predicates related to transparency properties that provide information
about three kinds of entities. First, non-terminal ToolP includes three predicates that capture
whether tools (accountability tools or other tools, services that are launched as resources from
the OS for example) are installed, configured and know about some subject. For instance, the
composite predicate

toolInstalled(a-pple) and toolConfigured(a-pple)

allows to check whether the tool A-PPLE is installed and configured. Second, non-terminal
PolicyP derives a set of facts capturing whether policies are installed, accessible and modifiable.
For instance the following composite predicate reflects the fact that the policy Pol is installed on
a-pple, and accessible but not modifiable by aas:

policyInstalled(a-pple, Pol) and
policyAaccessible(aas, Pol) and
(not policyModified(aas, Pol))

FP7-ICT-2011-8-317550-A4CLOUD Page 28 of 94

D:D-6.2: Accountability Toolset Validation Report

TimlinessP period(Task, Duration)
before(Task, Predicate)
after(Task, Predicate)

AvailabilityP toolAvailable(Tool)
toolAvailable(Tool, Function)
resAvailable(Resource, Resource)

Table 2.8: Responsiveness predicates

ResponsabilityP userAuthenticated(Subject, Resource)
responsibleRecorded(Subject, Task)

Table 2.9: Responsability predicates

Policies may impose restriction on arbitrary entities or only for specific subjects and resources
as defined by the second and third variant. Third, non-terminal SubjectResourceP denotes a
set of predicates stating basic facts about subjects and resources. For example, the information
about the resource R that it is located at the location L for a duration D, and that it is accessible
by the Subject S can be expressed by the following composite predicate:

located(R, L) and exists(R, D) and access(S, R)

The second group, shown in Table 2.8, consists of two sets of basic responsiveness pred-
icates. The first set (TimelinessP) enables tasks to be limited in time or with respect to (the
satisfaction of) other predicates. For example, to enable evidence collection when a policy vio-
lation occurs, one can use the predicate:

after(acEvidenceCollection(E), trPolicyViolation(Pol))

The second one (AvailabilityP) features predicates discriminating whether tools or resources
are available. The last predicate resAvailable is satisfied if a resource is available (linked,
connected, reachable, etc.) by another one. It can be used to capture, for example, if no
network connection can be established because of a wrongly configured firewall.

The third group, see Table 2.9, consists of responsibility predicates that permit to authenti-
cate users and state that a responsible is recorded for some task.

Tool-specific predicates

The final group of predicates, see Table 2.10, consists of tool-specific predicates. Note that
the policy-dependent predicates of the first group are, for a large part, specific to the A-PPLE
tool because only A-PPLE harnesses the full policy specification, while some tools, in particular
AAS, only support parts of it.

2.3.5 Expression of high-level properties in terms of low-level ones

We are now ready to introduce how (informal) high-level properties are formalized in terms of
low-low level ones.

FP7-ICT-2011-8-317550-A4CLOUD Page 29 of 94

D:D-6.2: Accountability Toolset Validation Report

EventP event(Predicate)
timestamped(Predicate, Duration)
aas.copyCreated(Resource)
aas.evidenceGathered(Predicate)
aas.encryptionNotEnforced(Resource)
aas.dataRelocated(Resource, Location, Location)
aas.notificationSent(Predicate)

dtmt.dataRelocated(Resource, Location, Location)
dtmt.acceptedLocation(Resource, Location)

imt.notificationSent(Predicate)

Table 2.10: Transparency predicates: EventP

The high-level property Pro: “by whom a subject’s data is deleted” can be expressed by a
composition of the following four low-level predicates: the A-PPLE tool detecting data deletion
operations (P1), the AAS tool constructing the evidence of which actor performed the processing
(P2) and notifying the IMT tool (P3), and the IMT tool sending corresponding notifications. These
low-level predicates are applied successively as follows, where R is some personal data and D
is a certain duration:

P1 = trPersonalDataDeleted(R, D)
P2 = aas.evidenceGathered(P1)
P3 = aas.notificationSent(P2)
Pro = imt.notificationSent(P3)

The property Pro can be generalized to “by whom a subject’s data is processed”. In this case
the predicate P1 has to be expressed as a disjunction of the low-level predicates that reflect the
fact that the A-PPLE tool detecting data processing operations: personal data accessed, deleted
or sent (more low-level predicates can be added, if any). In the latter case P1 is expressed as
follows, where R1 and R2 are some personal data:

P1 = trPersonalDataAccessedForPurpose(R1, R2, D) or
trPersonalDataDeleted(R1, D) or
trPersonalDataSent(R1, R2, D)

2.4 Summary

In this chapter, we have introduced the A4Cloud validation methodology, which is based on the
runtime verification of accountability assertions and temporal logic formulas. We have provided
an overview of the methodology that is realized by two corresponding tools, the AT and the
AccMon tool. We have shown how the methodology is related to the metrics developed as
part of WP C-5 and introduced the notion of general and tool-specific assertions that enable
accountability properties to be expressed by the Assertion Tool. Finally, we have illustrated how
(informal) high-level properties and (precisely-defined) low-level ones are linked: the latter are
used to express the former.

FP7-ICT-2011-8-317550-A4CLOUD Page 30 of 94

Chapter 3

The Assertion Framework

The validation methodology presented in the previous chapter is supported by a set of tools
and interfaces, the assertion framework. This framework mainly comprises the A4Cloud tools
to be validated and two validation tools: the Assertion Tool (AT) and the Accountability Monitor
(AccMon).

The AT supports runtime verification of A4Cloud tools through the application of validation
scenarios to eco-systems in which the A4Cloud tools (and potentially other tools) are running.
Validation scenarios can be used in two ways: either the AT runs the senarios by actively exerting
control over the A4Cloud tools in order to execute the A4Cloud tool interactions (REST calls,
mainly) that are defined as part of the scenario, or the AT observes the autonomously executing
A4Cloud tools by just gathering relevant information. In both cases, the AT verifies accountability
properties through the execution of accountability assertions that are also defined as part of the
validation scenarios. AccMon supports runtime verification through the distributed monitoring of
temporal logic formulae. It intercepts events on a set of machines and validates whether their
occurrence satisfies a logical formula or not.

In this chapter we first present the architecture of the assertion framework (Section 3.1),
followed by the Assertion Tool (Section 3.2) and the AccMon tool (Section 3.3). In Section 3.4,
we give a brief overview of the A4Cloud tools that we have subjected to validation. Finally,
Section 3.5 presents a summary.

3.1 Architecture of the assertion framework

In this section, we define the assertion framework. Its main goal is the validation of the A4Cloud
tools as a whole, that is, to validate whether the A4Cloud tools are cooperating correctly with
each other in order to satisfy accountability properties. The assertion framework is not con-
cerned by the validation of the individual tools (which is part of the responsibility of the tool
owners). Note that, not all A4Cloud tools are subjected for validation in D-6, but only those that
interact together in an automated fashion and can be associated to (at least) one of the account-
ability properties (see Section 3.4.1). The tool set that is subjected for the validation called the
A4Cloud toolkit.

The architecture of our framework is depicted in Figure 3.1. Its main component of is the
Assertion Tool that orchestrates the validation of the A4Cloud toolkit, manages the execution

FP7-ICT-2011-8-317550-A4CLOUD Page 31 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.1: Architecture of the assertion framework

of the validation scenarios (VSs), and provides the assertion API, the public interface of the AT
offered to tool developers, Cloud providers and Cloud auditors. The assertion API allows human
and or software agents to assert that a given A4Cloud toolkit is consistent with the dedicated
accountability attributes (i.e., satisfies its associated properties). It provides an abstraction layer
allowing tools to be validated in a unified manner, that is using the same set of exposed opera-
tions. Note that since the AccMon has not yet been fully integrated with the A4Cloud tools we
present it later in Section 3.3.

The validation of the A4Cloud toolkit requires several kinds of data that we call, collectively,
Validation data. These kinds include definitions of validation scenarios, the definitions of
accountability assertions and predicates, policy definitions, as well as runtime data, such as
incidents, logs, and evidence. A set of validation scenarios and a set of accountability asser-
tions/predicates are predefined; both may be extended by users of the AT through the assertion
API. To the contrary, the other kinds of data are collected at runtime and stored in dedicated
repositories by the AT for later use during checking of accountability properties. Concretely, the
following kinds of runtime information are harnessed:

• A-PPLE policies which are defined and associated to the validation scenarios.

• Incidents which are collected from the tools, such as the Incident Management Tool, while
executing validation scenarios.

• Logs which are collected from the A4Cloud tools, the Audit Agent System in particular, the
Data Transfer Monitoring Tool, and the A-PPL Engine.

• Evidence that is generated by tools such as the Audit Agent System.

The runtime data may come from the tools to be validated and/or other sources, such as
logs from infrastructure services. They are acquired by the AT by two different means:

1. (Principally public) information, such as installed policies and published logs, through the
standard APIs of the A4Cloud tools and other services.

FP7-ICT-2011-8-317550-A4CLOUD Page 32 of 94

D:D-6.2: Accountability Toolset Validation Report

2. Validation-specific information from A4Cloud tools through a an extensible interface, the
so-called Validation APIs.

Information may be pushed from the A4Cloud tools to the AT or pulled by the AT. A4Cloud tools
push information to the AT using a web server interface that is part of the AT.

In order to control the validation process via the Assertion Tool and manage interactions
with the A4Cloud tools, three kinds of API are used: the Assertion, Validation and A4Cloud tools
APIs.

Assertion API. This API provides basic services that other tools can employ to communicate
with the AT. This API involves the following groups of services:

• Interaction with other accountability tools. This subinterface mainly enables the call
of functionalities provided through other tools, principally through calls to REST services.

• Tool declaration and configuration. This subinterface allows the definition of new ac-
countability tools, the listing of current tools, etc. Such a declaration mainly requires the
definition of two entities. First, access methods to the functionality provided by the tools,
principally in form of calls to REST services, notably for access to logs and notifications
provided by the tool. Second, collector methods that gather runtime information for in-
stance logs.

• Scenario definition and execution. This subinterface permits validation scenarios to
be loaded, configured and executed. It also provides services for the listing of existing
scenarios and their modification.

These interfaces can be used programmatically but some are also accessible to users via the
AT’s graphical user interface.

Validation API. Validation APIs are offered by some A4Cloud tools in order to provide data that
is not publicly offered by the tools but is useful for validation. The validation API may support
pushing such information from the external tool to the AT. Furthermore, it can be used to send
data in a more secure way, after sanitizing and anonymization. The AAS and IMT tools have
been extended by validation interfaces that have been used in concrete validation tasks (see
Section 3.4 for info on the validation APIs offered by these two tools).

A4Cloud tools APIs. The AT employs the APIs of the external tools in order to interact with
them through REST calls. These interactions include, for example, the installation of A-PPLE
policies in order to initialize the execution of a validation scenario or the request of access to a
log that is stored within the Transparency Log (TL) tool (see Section 3.4.4.4).

3.2 The Assertion Tool

The Assertion Tool (AT) is the core component of the assertion framework. It enables tool
developers and cloud providers to validate the accountability properties of tool combinations,
such as A4Cloud toolkit, at runtime using a validation scenario-based methodology.

FP7-ICT-2011-8-317550-A4CLOUD Page 33 of 94

D:D-6.2: Accountability Toolset Validation Report

3.2.1 Features

As part of the validation methodology (see Figure 1.2 on page 13), the AT uses validation sce-
narios to control or observe the execution of A4Cloud tools and verify accountability properties.
It provides the following main features:

Accountability validation scenarios. Validation scenarios can be defined in terms of flexible
compositions (essentially orchestrations) of A4Cloud tool actions and accountability assertions.
Accountability assertions are built from accountability predicates and executed in order to dy-
namically verify accountability properties involving multiple tools.

The AT supports the concise definition of accountability scenarios using two features. First,
an automatic mechanism for the application of assertions enables to automatically execute cer-
tain tool-specific assertions based on assertions that express accountability properties involving
multiple tools.

Second, the collection of information necessary for validation, such as logs and notifica-
tions, is performed internally using so-called information crawlers. Crawlers often have not to be
called explicitly as part of validation scenarios because the AT provides automatic information
collection strategies. These strategies determine when the crawler fetching, for example, the
current contents of a log, is called. One of these automatic strategies calls a crawler gathering
information from a tool, for example, only when an operation on that tool has been performed.

Two modes for scenario execution. The AT provides two modes of execution of validation
scenarios that enable accountability properties to be validated in different ways:

In the scenario running mode, the Assertion Tool actively triggers the interactions of the
A4Cloud tools as defined in a scenario and also validates the accountability assertions as they
are defined in the scenario.

In the scenario observation mode, the Assertion Tool observes the interactions of the au-
tonomously executing A4Cloud tools and validates accountability assertions based on available
runtime information, such as logs and notifications. In this mode, the AT provides support to
automatically update relevant information, such as logs, and to check for the validation of ac-
countability assertions.

Extensible tool set and validation interfaces. The AT includes a tool interface that enables
the declaration of and interaction with the A4Cloud tools and other external accountability tools.
The tool configuration mainly comprises services offered by the tool and the definition of crawlers
for accountability-relevant information that is updated regularly.

The tool configuration may also include validation interfaces that support the direct, possibly
secured and sanitized, communication between the external tool and the AT tool.

3.2.2 Architecture

Figure 3.2 shows the main components of the architecture of the AT that realize the features
introduced above. In the following we consider them in more detail.

FP7-ICT-2011-8-317550-A4CLOUD Page 34 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.2: Architecture of the Assertion Tool

GUI. A graphical user interface that allows A4Cloud developers and cloud providers to con-
figure accountability tools, select and define validation scenarios and their associated account-
ability properties/assertions. It also permits to execute validation scenarios according to the
different modes.

Scanner & Analyzer. This component scans and interprets validation scenarios provided
through the GUI or the assertion API. This component is in charge of transforming the vali-
dation scenario that are formulated using a Java-based domain specific language (DSL) into
an executable piece of code. It then launches the scenario through the Scenario Runner or
Scenario Matcher components according to whether the mode running mode or matching
mode has been chosen.

Scenario Runner. The scenario runner handles the execution of a validation scenario in run-
ning mode. This involves executing interactions of the accountability tools (essentially calling
services of their REST interfaces) and collecting runtime data according to the configured col-
lection strategy. The scenario runner also interacts with the Assertion Validator component
to execute the accountability assertions to validate the corresponding accountability properties.

Scenario Matcher. The scenario matcher handles the execution of a validation scenario in
matching mode. In this case, the validation scenario does not trigger the interactions with the
accountability tools but only observe the execution of the tools and checks the accountability

FP7-ICT-2011-8-317550-A4CLOUD Page 35 of 94

D:D-6.2: Accountability Toolset Validation Report

assertions defined in the scenario using the Assertion Validator component. In this execu-
tion mode, the assertions are checked regularly based on the scenario configuration that may
be provided by the user.

Assertion Validator. This component validates the accountability assertions that are part of
validation scenarios by analyzing logs, parsing reports, comparing notifications, etc. The corre-
sponding data might come from the validation data repositories which contain the definitions of
predicates/assertions as well as data gathered from the running accountability tools. Moreover,
information may be gathered from external tools to validate assertions.

Validation Report Generator. The report generator produces validation reports based on the
execution state of validation scenarios and the validation of assertions. These reports constitute
the output of the AT for a validation request from a user of the tool. The report states whether
or not the specified toolkit is validated with respect to the specified properties/predicates and
contains details on the execution of the validation scenario. Note that, in running mode a report
is provided at the end of scenario execution, while in matching mode reports on the assertion
state are provided continuously during a period that can be specified by the user of the AT.

Push Server. The AT implements a REST server which receives information automatically
from the A4Cloud tools. The latter can passively interacts with AT by pushing any data which
could be relevant to the validation process. The AAS and IMT tools have been extended with
this feature which have been used for D-6 Demo. In the next section we present the interfaces
offered by the Push Server.

3.2.3 Implementation

The source code of the AT is written in Java (jdk1.8), and the GUI is implemented using HTML/-
JavaScript. They can be deployed using a web service in Tomcat 8.

Figure 3.3 shows a detailed (implementation-level) architecture of the Assertion Tool. The
web server allows the Assertion Tool interfaces to be accessed remotely through a dedicated
GUI. The Loader dynamically loads and compiles the validation scenarios. It implements a
dynamic source Java compiler for the GUI. The Scanner provides a concrete representation,
based on a Domain Specific Language (DSL), of the abstract validation scenarios provided by
the user. The Analyzer mainly generates a term which corresponds to the validation scenario,
that is a sequence of tool actions, assertions, and data collections. The Interpreter interprets the
term provided by the Analyzer and runs it according to one of the supported execution modes.

To execute a validation scenario the Scanner first parses the validation scenario and pro-
vides for each step (tool action, assertion, or evidence collection) an equivalent term. Then the
Analyzer analyzes the validation scenario and generates a global term of the form defined by
the grammar shown in Figure 3.4 (described below). Finally, the term representing the validation
scenario is evaluated following one of the possible execution modes.

In the following, we present the main implementation-level features of the AT.

Runner and matching execution modes. The AT provides two modes of execution: the run-
ning mode and matching mode. In the running mode the AT executes the steps, including the

FP7-ICT-2011-8-317550-A4CLOUD Page 36 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.3: Detailed Implementation-level architecture of the Assertion Tool

tool actions and assertions as defined by the provided validation scenario. Assertions are there-
fore checked only where and when they appear as part of the scenario. In this mode only one
validation report is generated.

In the matching mode, the AT runs the provided validation scenario while pushing all the
encountered assertions in an assertion queue. As part of the scenario configuration or the
system configuration, the user then has to specify the number of times and the time period
during which the queued assertions are checked.

Validation scenarios. Validation scenarios are implemented using Java classes that feature
a method scenario for the scenario definition. The predefined sets of tool interactions and as-
sertions provided by the AT allow the scenarios typically to be defined in a concise and abstract
manner.

Listing 3.1 presents, for example, a data retention scenario. In this scenario, the AT first
installs policies for the A-PPLE and AAS tools. The A-PPLE policy, as suggested by its name,
defines a retention period of information from user Panos of two minutes. The AT than creates
an OpenStack snapshot (that violates the policy because it will exist after the retention period),
and finally checks whether a retention violation assertion has been recognized and notified.

Validation scenarios are represented internally by terms of the form given by the grammar
shown in Figure 3.4. The AT defines a validation scenario as a ATTerm. An ATTerm can be built
based on a set of basic terms: ATBegin, ATCAll, ATAssert, ATCrawl, ATEnd, that respectively
represent REST calls, assertions, data-collection crawlers and return statements. This common
representation of a validation scenario allows different interpretations for the same validation
scenario, a feature used, for instance, to implement the two scenario execution modes.

FP7-ICT-2011-8-317550-A4CLOUD Page 37 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.1: Data Retention validation Scenario

1 public void scenario () {
2 // 1. Create Data Retention Audit Task through AAS

3 aas.createDataRetentionAuditTask ();

4

5 // 2. Add a policy to A-PPLE

6 apple.createPII("policies/panosCountryPii2Min.xml");

7

8 // 3. Create OpenStack SnapShot

9 openstack.createSnapshot ();

10

11 // 4. Check Retention Violation Assertion

12 ACCOUNT.retentionViolation ();

13 }
14 }

ATTerm := ATCall ATTerm
| ATAssert ATTerm
| ATCrawl ATTerm
| ATBegin ATTerm
| ATEnd

Figure 3.4: The grammar of ATTerm

Assertion validation. The AT essentially supports two kinds of assertions: the tool-specific
ones, and more general ones that are defined in terms of the former. The tool-specific assertions
and simple general assertions are predefined and proposed as part of a Java library ACCOUNT.
In the general case, complex assertions may be defined programmatically. However, complex
assertions can frequently be defined as conjunctions of corresponding assertions for the tools
involved in a scenario.

For instance, the ACCOUNT.retentionViolation() (Line 12 in Listing 3.1) is a complex
assertion that is broken down by the AT in assertions for the three tools involved in the scenario:

• An A-PPLE assertion checks whether a data retention policy has been installed and ap-
plied.

• An AAS assertion checks whether copies, such as OpenStack snapshots, have been cre-
ated and exist beyond the retention period, as well as whether a corresponding violation
notification has been sent to IMT.

• An IMT assertion that checks whether a notification has been sent to a relevant subject.

In order to support this pattern, the AT checks and executes, if a complex assertion is not
defined explicitly, all tool-specific assertions with the same name as the global one. In this

FP7-ICT-2011-8-317550-A4CLOUD Page 38 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.2: The Retention Violation assertion

1 public boolean retentionViolation(Env env) {
2 // 1. Get relevant Apple policy events

3 Stream <String > appleEvent = getAppleEvents(env);

4

5 // 2. Identify relevant AAS snapshot information

6 Pattern snapIdPattern = getSnapshotId ();

7

8 // 3. Get snapshot information

9 List <String > snapshotsInfo = getSnapshotInfo(env, snapIdPattern);

10

11 // 4. Get times for deletion policy

12 Pattern delTimePattern = getDeletionTime ();

13

14 // 5. Check if snapshot exists after deletion time

15 boolean res = checkSnapshotExistance(appleEvent,snapIdPattern,

snapshotsInfo,delTimePattern);

16

17 // 6. Return result

18 return res;

19 }

Listing 3.3: The getAppleEvents assertion

1 public Stream <String > getAppleEvents(Env env) {
2

3 Stream <String > appleEvent = env

4 .of(this)

5 .log().stream ()

6 .filter(s -> s.contains("received_apple_log"));

7 return appleEvent;

8

9 }

case, the Analyzer replaces the general assertion by the corresponding tool-specific ones by
modifying the representation of the scenario term, see Figure 3.4.

Furthermore, the AT allows the verification of the assertions during and at the end of the
evaluation of validation scenarios in both modes of execution.

As an example of an assertion let us consider Listing 3.2 that shows how a data retention
assertion can be defined. It first filters out the relevant A-PPLE policy events, then extracts the
information on snapshots obtained from AAS, and the deletion time. Finally, it verifies whether a
snapshot has been created during application of the policy and exists beyond the deletion time
specified by the policy.

The retention assertion verification executed in five steps involving actions of the A-PPLE
and AAS tools. Each step uses a predefined assertion that is part of the ACCOUNT package. In
the following, we present the implementation of these five assertions.

FP7-ICT-2011-8-317550-A4CLOUD Page 39 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.4: The getSnapshotId assertion

1 public Pattern getSnapshotId () {
2

3 Pattern snapIdPattern =

4 Pattern.compile(".*? NovaImage \\{id=(\\w+).*?"

5 + "<evidenceDetectionTime >"

6 + "(.+)?"

7 + "</evidenceDetectionTime >.*");

8 return snapIdPattern;

9

10 }

Listing 3.5: The getSnapshotInfo assertion

1 public List <String > getSnapshotInfo(Env env, Pattern snapIdPattern)

{
2

3 List <String > snapshotsInfo = env

4 .of(this)

5 .log().stream ()

6 .filter(s -> !s.contains("received_apple_log"))

7 .filter(s -> s.contains("snapshot_detected"))

8 .filter(s -> snapInfoPattern.matcher(s).matches ())

9 .collect(Collectors.toList ());

10 return snapshotsInfo;

11

12 }

Listing 3.6: The getDeletionTime assertion

1 public Pattern getDeletionTime () {
2

3 Pattern delTimePattern =

4 Pattern.compile(".*? PII delete message .*?"

5 + "date: ([\\d-]+) ([\\d:\\.]+) .*");

6 return delTimePattern;

7

8 }

FP7-ICT-2011-8-317550-A4CLOUD Page 40 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.7: The checkSnapshotExistance assertion

1 public boolean checkSnapshotExistance(appleEvent,snapIdPattern,

snapshotsInfo,delTimePattern) {
2

3 return appleEvents.filter(s -> appleEvtPattern.matcher(s).matches

())

4 .allMatch(evt -> {
5 LocalDateTime evtDt = getSnapshotEvtDT(appleEvtPattern, evt)

;

6 return aasSnapshotsInfo.stream ().anyMatch(evd -> {
7 LocalDateTime evdDt = getSnapshotEdtDT(snapInfoPattern,

evd);

8 return evdDt.isAfter(evtDt);

9

10 }

Listing 3.3 presents the getAppleEvents assertion which retrieves the A-PPLE events. List-
ing 3.4 presents the getSnapshotId assertion which obtains the snapshots’ identities. List-
ing 3.5 presents the getSnapshotInfo assertion which obtains the snapshots’ information,
based on the identities obtained in the previous step. Listing 3.6 presents the getDeletionTime

assertion which obtains the deletion time of the snapshots’ information. Finally, Listing 3.7
presents the checkSnapshotExistance assertion which perform pattern matching in order to
check whether a snapshot has been created during beyond the deletion time, based on the
information obtained on the previous steps.

Explicit and implicit evidence collection. The AT implements methods which support the ex-
plicit and also implicit collection of evidence, such as logs and notifications. The AT supports five
different strategies for evidences (e.g., logs, notifications, etc.), namely: CURRENT, TOOL_STEP,
Scenario_STEP, beforeAssert, afterCall The strategy CURRENT allows to perform evidence
collection explicitly by inserting a corresponding step inside the validation scenario. Using the
strategies TOOL_STEP and Scenario_STEP evidence collection is implicitly performed, respec-
tively, after every tool step and scenario step inside the validation scenario. While using the
strategies beforeAssert and afterCall evidence collection is implicitly performed, respec-
tively, before an assertion verification and after a REST call execution. The beforeAssert is
in particular important in the matching mode where it is necessary to collect any new evidence
before the next verification of the assertions. Note that the AT supports the combination of two
or more strategies.

Tool definition. The AT is configured with a set of default tools (A-PPLE, AAS, IMT, and Open-
Stack), which can be loaded and used to define validation scenarios. However, the user can
define new accountability tools and integrate it in the system. AT’s tool API provides methods to
manage interactions with tools. The tool-defining methods are classified into three groups that
are distinguished using the following annotations:

• @Evidence: evidence-collecting methods, such as logs and notifications. The evidence
annotation takes as an argument a set of evidence-gathering strategies, as described in

FP7-ICT-2011-8-317550-A4CLOUD Page 41 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.8: AAS tool Java implementation

1 public class AASTool {
2 // Evidence

3 @Evidence(strategy = {CURRENT, TOOL_STEP})
4 void getLog(Env env) {...}
5 @Evidence(beforeAssert = "successfulAccess")

6 void getLogAfter10s(Env env) {...}
7

8 // REST Calls

9 @Call

10 JSONObject createIntrusionDetectionAuditTask(args)

11 { ... }
12 @Call

13 JSONObject createDataRetentionAuditTask(args) {...}
14

15 // Assertions

16 @Assert

17 boolean successfulAccess(args, env) {...}
18 @Assert

19 boolean retentionViolation(args,env) {...}
20

21 // Utils

22 String getIntrusionEvtId(Pattern p, String event) {...}
23 LocalDateTime getSnapshotEvtDT(p, event) {...}
24 LocalDateTime getSnapshotEdtDT(p, evidence) {...}
25 }

the previous paragraph.

• @Call: methods that allow the AT to perform REST calls on a tool.

• @Assert: methods defining tool-specific assertions.

Listing 3.8 shows how the AAS tool is defined. The AASTool class is defined including meth-
ods for evidence collection to get logs, two REST calls which permit to create audit tasks at AAS
tool, two assertions successfulAccess and retentionViolation, and a set of utility meth-
ods to facilitate the assertion definitions. The successfulAccess assertion verifies whether an
EvidenceRecord contains all relevant A-PPLE events to accesses of a users’ private data. This
assertion is used, in particular, in the intrusion detection validation scenario, see Section 4.2.1.
The retentionViolation assertion verifies whether there is any information related to a cer-
tain snapshot after a certain point of time. It is used, in particular, in the data retention scenario,
see Section 4.2.2.

Interaction with other tools. The AT interacts with the A4cloud tools by performing calls to
the REST webservices of the tools in order to trigger some actions or collect some validation
data.

Listing 3.9 presents an example of a REST call by AT to AAS. This REST call initializes the
AAS with a data retention audit task.

FP7-ICT-2011-8-317550-A4CLOUD Page 42 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.9: REST call to AAS

1 public JSONObject assCreateDataRetentionAuditTask(JSONObject args) {
2 JSONObject res = new JSONObject ();

3 String s = Unirest.get(AAS_URL)

4 .routeParam("service", "setAuditTask")

5 .header("accept", "application/json")

6 .queryString(JSONHelper.toMap(args))

7 .asString ()

8 .getBody ();

9 res = new JSONObject("{" + REST_KEY + ":" + s + "}");

10 return res;

11 }

API Name Purpose of use Consumed by Data

Interaction
API

Instantiate and execute validation sce-
narios. Re-/load, list assertions.

AT user interface JSON

Scenario API Re/load, list validation scenarios AT user interface JSON
Tool API Re/load, list tool definitions AT user interface JSON
Validation
API

Push data for validation purposes (notifi-
cations . . .)

AAS, IMT tools JSON

Table 3.1: REST interfaces offered by the Assertion Tool

AT’s REST interface. The AT offers a set of APIs, collectively called the Assertion API. This
API offers four subinterfaces: the Interaction, Tool, Scenario, and Push Server subinterfaces.
Details of these subinterfaces can be found in Table 3.2.3.

GUI. The GUI implements the assertion API. A user can use the GUI to directly load and
execute the configured validation scenarios following the possible execution modes, as well as,
to get the result displayed through the GUI. A user can also define new tools and validation
scenarios through the GUI.

Figure 3.5 shows a screenshot of the GUI. From the left-hand side a user can load already-
defined tools, assertions, and validation scenarios (from “Code” tab). It can also execute the
validation scenarios following either the running mode or the matching mode (from “Check”
tab). After a validation scenario execution, the validation result are displayed: the number of
assertions checked, the assertions that have succeeded, and those that have failed along with
the reasons of failure. Using the buttons at the top a user can create new entities, save or delete
them. The screenshot depicted in Figure 3.5 shows the GUI while displaying an empty structure
of a validation scenario together with the related headers. Such a scenario’s default structure
can be loaded by the “+” symbol that is beside the scenario list. Similarly, a default structure for a
tool definition can be loaded by the “+” symbol that is beside the tool list. Note that the assertion
list (which is not appear in the screenshot presented in Figure 3.5) is under the “Assert” tab.

Figures 3.6 and 3.7 respectively show a screenshot of the GUI displaying the already defined
Data Retention validation scenario and A-PPLE tool.

FP7-ICT-2011-8-317550-A4CLOUD Page 43 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.5: Screenshot of the GUI

1 # Add a rule on HTTP request

2 Sysmon.add_http_rule("Rule1", control_type=Monitor.MonControlType.REAL_TIME

,

3 "G(![req:GET](USER(’bob’) => ~ReqIn(r\"taskManager/profile/\", req))")

3.3 AccMon: Accountability Monitor

3.3.1 Overview

The goal of AccMon is to provide means to monitor accountability policies in the context of a real
system. AccMon allows to specify policies that are applicable to network traffic, web application
code and external components via plugins. These policies are based on a distributed temporal
logic with data. The framework allows centralized or distributed monitoring and both on-line and
off-line controls.

In the following is an example of monitoring a rule ”user bob should not access to the URL
’taskManager/profile/’ ” (details are provided in next sections): The rule means: Always, forall
GET requests if the logged user is bob then the url requested by bob should not starts with
taskManager/profile/.

FP7-ICT-2011-8-317550-A4CLOUD Page 44 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.6: Screenshot shows the data retention scenario

3.3.2 Architecture

As the Figure 3.8 shows, AccMon acts as a middleware in the framework, it intercepts and logs
client’s HTTP requests, server’s requests processing and responses. On the web application
side the developer can configure the framework to intercept function/method calls and databases
access. AccMon can acts as a daemon and can be interconnected with external tools, the
property to monitor on the tool is defined in AccMon and the tool sends log events to AccMon
via HTTP calls. The framework can be also connected with external hardware such as Arduino1

electronic boards.
The Figure 3.9 shows AccMon internal architecture which is composed with:

1. Monitors: a monitor is defined by an id, a Fodtl formula2, a control type (posteriori or
realtime), and optionally a remediation formula which represent the formula to monitor in
case of violation of the rule.

• add<http|view|response > rule: the target group for the monitor, it can be when a
request is received, when the response is computed, or when a response is returned

1Arduino is an open-source prototyping platform based on easy -to-use hardware and software. for more details see
https://www.arduino.cc/

2For First-Order Distributed Temporal Logic, this is the formal language supported by AccMon.

FP7-ICT-2011-8-317550-A4CLOUD Page 45 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.7: Screenshot shows A-PPLE tool

1 # Add a rule (monitor) in the system

2 Sysmon.add_<http|view|response>_rule(<name>, <Foddtl_formula>, description=

"",

3 control_type=Monitor.MonControlType. <REAL_TIME|POSTERIORI>,

4 violation_formula=<V_Fodtl_formula>)

FP7-ICT-2011-8-317550-A4CLOUD Page 46 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.8: AccMon global architecture

Figure 3.9: AccMon internal architecture

to the client.

• < Fodtl formula >: a first order distributed temporal logic formula which corre-

FP7-ICT-2011-8-317550-A4CLOUD Page 47 of 94

D:D-6.2: Accountability Toolset Validation Report

1 # Logging attribute evaluation function

2 # In this example we log the request scheme

3 def fx(request, view, args, kwargs, response):

4 return P("SCHEME", args=[Constant(request.scheme)]))

5

6 # Creating a logging attribute

7 lg = LogAttribute(<name>, description="...", enabled=<True|False>, eval_fx=

fx)

8

9 # Adding the logging attribute to the system

10 Sysmon.add_log_attribute(lg, target=Monitor.MonType.<HTTP|VIEW|RESPONSE>)

1 class XSS(Control):

2 def prepare(self, request, view, args, kwargs):

3 data = getattr(request, request.method)

4 for key in data:

5 mutable = data._mutable

6 data._mutable = True

7 data[key] = sanitize(data.get(key))

8 data._mutable = mutable

spond to the property to monitor.

• < REAL TIME|POSTERIORI >: the behavior of the monitor, in real time mode
the monitoring is a blocking operation and when a violation occurs it blocks the cur-
rent request. In the posteriori mode the monitoring operation is delayed and when a
violation occurs it will be just reported.

• < V Fodtl formula >: the formula to monitor when this rule is violated.

2. Logging: a log attribute is defined by a name, a description and an evaluation function
that takes five arguments (request, view, args, kwargs, response) and which will be called
automatically by the framework if the logging attribute is enabled.

3. Controls: defines security checks that can be extended by the developer. Below an exam-
ple of an input sanitizer in order to prevent some XSS attacks:

4. Plugins: connect AccMon with external components which allows to define monitors that
monitor formulas for external softwares/ hardware in AccMon. The framework expose an
interface in order to receive events from external components.

3.3.3 Implementation

The implementation of AccMon framework is based on Django which is an open-source web
application framework written in Python and it is based on the model-view-controller (MVC)
pattern.

FP7-ICT-2011-8-317550-A4CLOUD Page 48 of 94

D:D-6.2: Accountability Toolset Validation Report

1 # The evaluation function of the log attribute

2 # Here we return a predicate that looks like: USER(’user_name’)

3 def username(request, view, args, kwargs, response):

4 return P("USER", args=[Constant(request.user)])

5

6 # Create the log attribute

7 username_log = LogAttribute("UserName", enabled=True, eval_fx=username)

8

9 # Register the attribute in the monitoring system and make it available

10 # on HTTP request level.

11 Sysmon.add_log_attribute(username_log, target=Monitor.MonType.HTTP)

1 class UserEq(IPredicate):

2 # Compare the username of a user for a given id with a given username.

3 # Usage in a formula: UserEq(usser_id, user_name)

4 def eval(self, valuation=None):

5 args2 = super().eval(valuation=valuation)

6 u1 = User.objects.filter(id=args2[0].name).first()

7 return u1.usernmae == args2[1].name

1 # Add a rule on HTTP request

2 Sysmon.add_http_rule("UserProfile", control_type=Monitor.MonControlType.

REAL_TIME,

3 "G(![id:UIDL uname:USER req:GET](ReqIn(r\"taskManager/profile/\", req) =>

4 UserEq(id, uname)))")

In the following we presents the steps to use our framework. First we need to define what we
want to log, AccMon comes with predefined logging attributes that can be enabled and disabled
at runtime. The developer can also define custom attribute to log. Here a basic example:

Next the developer can define custom interpreted predicates and functions that will be used
in the monitoring formulas (this feature is provided by FodtlMon 3). Here an example that checks
if the corresponding user (Django user) of a given id has a certain username.

Finally the developer defines monitoring rules using Fodtl formulas. Here some examples:

• Add a rule on HTTP request:

• System interfacing example: In this example each time the user uses the change direc-
tory ’cd’ command of the operating system, the system sends the event with the path to
AccMon.

• Hardware interfacing example (Arduino): In this example we built a laser detector using an
Arduino board, a laser diode and a light sensor. Basically the laser diode points into the
light sensor which sends to the arduino board a value of the light intensity. 4 The code on

3FodtlMon is the fodtl monitoring engine.
4The AccMon arduino plugin read the events from the serial port and append them to arduino monitors traces.

FP7-ICT-2011-8-317550-A4CLOUD Page 49 of 94

D:D-6.2: Accountability Toolset Validation Report

1 # Check if the path is not in /root/*

2 remote.Remote.add_rule("cdroot", "G(![path:cd](~Regex(path, r\"/root/*\")

))")

1 # The light intensity should be always greater than 10

2 arduino.Arduino.add_rule("light", "G(![x:LIGHT](Gt(x, ’10’)))")

1 DataRetentionExpire => (Forall x:snapshot snapshot_deleted(x) AND

2 At(backupStorage, Future(Forall x:snapshot snapshot_deleted(x))))

the arduino board (written in C language) simply reads values from the light sensor and
print them in the serial port, in the form of a predicate LIGHT(value).

3.3.4 AccMon collaboration with the Assertion Tool

AccMon provides unique features and can also be used in conjunction with the Assertion Tool.
The main usage of AccMon is for monitoring a distributed system and a second serves to check
execution traces.

AccMon is able to monitor distributed systems from a property written in a Fodtl, but this
property can be a security, accountability, or correctness property. The main way to use Acc-
Mon is to use it as a standalone tool for centralized or distributed systems monitoring. AccMon
is based on first-order temporal logic with predicates. To interact with AccMon the monitored
agents needs to be instrumented to generate events. An event is an instantiation of a predicate
with some concrete values and it denotes the agent processing an action with the required pa-
rameters. Once the scenario to evaluate has been (manually) translated into the logic accepted
by AccMon, the AccMon engine is able to generate monitors for each of the agents involved
in the system. The language accepted by AccMon is based on first-order temporal logic, like
AccLab, however there are several differences since AccMon can explicitly handle distribution.

Once agents are equipped with the adequate interfaces then AccMon is able to produce a
set of distributed agents. For instance let us consider the scenario:
A service provider csp using a backup storage service backupStorage. The csp want to mon-
itor that all snapshots are deleted after the retention period expires. Having AccMon deployed
on the both side, csp will monitor the following formula: The formula represent the following
property: when data retention period expires, all snapshots in csp should be deleted and at
backupStorage service in the future all snapshots should be deleted.

Generally we will have more distributed agents and using a central controller as actually did
by the Assertion Tool is not scalable. Thus AccMon provide a scalable solution here comple-
mentary to the Assertion Tool. However, the main drawback is the formula writing, which is
currently not user-friendly, while it can be improved in the same way it has been done with the
AccLab tool. The Assertion Tool provides an more classic input solution which is more suitable
for Java programmers.

It is possible to use AccMon in collaboration with the Assertion Tool to validate execution
traces against a behavioral formula. In order to reuse the Assertion Tool’s validation scenarios

FP7-ICT-2011-8-317550-A4CLOUD Page 50 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 3.10: Fodtl formulas for AccMon

1 # intrusion detection with threshold=5

2 Future (apple.accessPIIFromPanos() AND

3 (Future (apple.accessPIIFromPanos() AND

4 (Future (apple.accessPIIFromPanos() AND

5 (Future (apple.accessPIIFromPanos() AND

6 (Future apple.accessPIIFromPanos()))))))))

7 => ass.triggerViolation("panos","access","threshold")

they have first to be translated manually (but an automated translation seems possible) into a
first-order temporal formula.

The Listing above 3.10 describes, for instance, a Fodtl formula for the intrusion detection
scenario.

On one hand, the Assertion Tool needs to implement the testing scenario which is done
in a manner rather familiar to Java programmers. On the other hand, AccMon do not need to
program something but takes as input a logical formula which is an approach more dedicated
to formal specifier or user of model-checking tools. There is no silver bullet here but two tools
providing different inputs for distinct end users.

Once these formulas are defined, the FodtlMon module, an essential part of AccMon, is able
to analyze a global execution trace and to check if it violates the formula or not. There is a point
to clarify here, we consider that we have dispose of a global time which is possible under some
runtime hypotheses. Otherwise, we need to use logic global time for distributed system defined,
for instance, using vector clocks [Mat89, Fid88].

The FodtlMon module takes a formula and a finite global trace, evaluates the events one by
one and generates three possible outputs:

• True: the trace never violates the formula

• False: the trace has violated the formula

• ?: there is not violation until now but the future is not determined

In fact in the last case it produces a future formula expressing what could happen if we add
new events to the current trace. The reader should note that generally AccMon will provide a
finer analysis than the Assertion Tool and this impacts greatly the performance of the checking
mainly in the critical case of online testing. The important fact here is that the performance of
AccMon is independent of the length of the trace to check and it only depends on the complexity
of the formula. This is different with the Assertion Tool which will analyze again the complete
trace each time new events are arriving.

Let us consider a property like PROP=“always writing Kim’s data implies that a notification is
send to Kim”. Consider a trace starting with a writing event followed by one million of anyother
event. The Assertion Tool sees only the writing event in the current trace thus it will conclude
that the property is false. But if the next following event is a notification then the tool will read
again the full trace to conclude that the property is satisfied until now. The situation is different
with AccMon since the property will be rewritten after the writing event in something like “waiting
for a notification” and PROP. The anyother events do not rewrite the formula and when the no-
tification event arrives the property is rewritten as PROP meaning that this is the future property

FP7-ICT-2011-8-317550-A4CLOUD Page 51 of 94

D:D-6.2: Accountability Toolset Validation Report

to check. This improvement is critical in online testing since the trace is growing and of course
the time to analyze it.

To conclude AccMon allows monitoring of distributed systems as soon as the agents are
equipped with adequate interfaces. It is also complementary to the Assertion Tool and can be
used with it to validate concrete scenarios of execution and then help to test the A4Cloud tools.
Nevertheless AccMon relies on complex input formulas but it provides a better support for online
testing.

3.3.5 Screenshots

Figure 3.10 shows the list of monitors that are running in AccMon.

Figure 3.10: AccMon monitors overview

Figure 3.11 shows the events collected by AccMon on the HTTP requests. Figure 3.12
shows the Assertion Tool plugin for AccMon. The plugin allows to configure which attributes to
log from APPLE and AAS logs.

3.4 A4Cloud toolkit

In WP D-2, the A4Cloud partners conducted two internal surveys on A4Cloud tools and pro-
posed a high level functional architecture of the A4Cloud tools [GKP+15a]. In this architecture
(see Figure 3.13), the 12 A4Cloud tools are grouped according to their main functionality into
five areas.

In the following, we present the A4Cloud tools that are part of the validation toolkit, that is,
that we have subjected to validation.

3.4.1 Tool set subjected for validation

The A4Cloud toolkit considered in D-6 for validation constitutes the “main input” for the assertion
framework. Some of the tools, such as the contract and risk management tools are intended to
be used manually as advisory tools, while others can be used in an automated fashion as part
of Cloud ecosystems and infrastructures. Among these tools the accountability-enforcing tools,
such as the Accountability Primelife Policy Engine (A-PPLE), the Audit Agent System (AAS),
and the Incident Management Tool (IMT), play a particular role because of the variety, volume

FP7-ICT-2011-8-317550-A4CLOUD Page 52 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.11: AccMon traces

and complexity of interactions between Cloud actors and their data. These interactions require
that accountability tasks are automated as far as possible.

The A4Cloud tools achieve a high degree of automation, all the while being able to enforce
diverse accountability properties at very different levels of Cloud architectures. They encompass
high-level properties, such as a data subject knows about all locations at which her data is stored
or intrusion attempts in access-controled data sets of Cloud users. They also have to satisfy low-
level properties, such as the identification of sensitive data in virtual machine snapshots at the
infrastructure level.

Due to the diversity of the tools, the interactions between actors and the data involved, the
correct enforcement of accountability properties by the A4Cloud tools is difficult to be validated.
After performing a study on the tools, we found that the A4Cloud tools that might be particu-
larly interesting for the validation process are: the Accountable-PPL Engine (A-PPLE), the Audit
Agent System (AAS), the Data Transfer Monitoring Tool (DTMT), the Incident Management Tool
(IMT), and the Transparency Log (TL). These tools constitute the A4Cloud toolkit that is consid-
ered in D-6 for validation.

In the remainder of this section, we provide an overview of the interactions between these
tools (Section 3.4.2), the corresponding data flows (Section 3.4.3), and a brief description for
each tool (Section 3.4.4).

FP7-ICT-2011-8-317550-A4CLOUD Page 53 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.12: AccMon – Assertion Tool plugin

3.4.2 Overview of the A4Cloud toolkit interactions

In this section, we provide an overview of the interactions of the A4Cloud toolkit. The diagram
of Figure 3.14 shows one instance for each tool except for TL that appears in two instances:
the first is used by A-PPLE to store its logs, the second is used by DTMT to store its logs and
communicate with AAS. The diagram shows the different messages that are communicated be-
tween the tools. Communication between the tools is unidirectional or bidirectional as indicated
by the links. Labels on the links provide an abstract description of the data that flows between
the tools. The different data flows that are highlighted in the interaction diagram are:

• A-PPLE sends the A-PPL policy to AAS. The policy has been been generated by Acclab
and PLART,.

• AAS sends incidents and violation notifications to IMT.

• AAS requests and collects events/evidence from A-PPLE.

• A-PPLE uses its TL instance to store and retrieve its logs.

• AAS can retrieve logs from the TL of A-PPLE

• DTMT sends notification to the IMT.

FP7-ICT-2011-8-317550-A4CLOUD Page 54 of 94

D:D-6.2: Accountability Toolset Validation Report

Transparency**
Log*

Remedia2on*&*
Redress*Tool**

Data*Track*

Incident*
Management*

Tool*

Preven&ve'

Data'Subject'Controls'

='UI'

Plug<in*for*
Policy*

Viola2on*

Contract'&'Risk'Management' Incident'Management''
&'Remedia&on'

Evidence'&'Valida&on'

Accountability*
Lab*

Privacy*Level*
Agreement*

Representa2on*
Tool*

Accountable*
Primelife*Policy*

Engine*

Data*Protec2on*
Impact*

Assessment*Tool**

Policy'Defini&on'&'Enforcement'

Asser2on*Tool*

Cloud*Offerings*
Advisory*Tool*

Data*Transfer*Control*
Tool*

Audit*Agent*System*

Detec&ve' Correc&ve'

AccMon*

Figure 3.13: High level view of the A4Cloud tools [GKP+15a]

• DTMT uses its TL instance to store its logs.

• AAS is allowed to access logs stored in TL of DTMT.

• IMT sends end user notification to A-PPLE.

The interaction diagram provides a global view of the interactions that occur between the
tools. The validation focuses on the collaborations between tools in order to satisfy non-local
accountability properties.

3.4.3 Data flows and data format

In addition to the tool interactions, we consider the data formats used for these interactions that
have to be taken into account during validation.

3.4.3.1 AAS and Evidence Store.

Evidence is stored in an Evidence Store by the corresponding evidence collection agent. The
gathered information is transformed into evidence record(s) as defined in FoE [TRAR+15].

FP7-ICT-2011-8-317550-A4CLOUD Page 55 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.14: Toolkit interaction diagram.

Listing A.1 in the Appendix A shows a snapshot violation occurred at machine named ’Main-
Container’, collected by an agent named DataRetentionPolicyEvaluationAgent. There are sup-
porting elements (which can be either an ’Blob’ or an String).

3.4.3.2 AAS to IMT or AT (notify incident / policy violation)

AAS notifies the IMT about an occurred incident, and policy violations. Therefore all suspicious
incidents are transformed into IMT notification messages. This message contains the generated
evidence record5 which describes the occurred incident. The policy violation report is also
defined in FoE (Framework of Evidence) [TRAR+15].

Listing A.3 in Appendix A shows an example of an IMT notification sent by AAS regarding a
possible Data Retention policy violation: The custom fields contain the actual evidence - e.g.,
the PII store and delete messages as well as proof of an existing snapshot which includes the
data already deleted by A-PPLE.

3.4.3.3 DTMT to A-PPLE (policy violation notification)

DTMT notifies the A-PPL Engine about a data transfer policy violation which has the three
attributes as shown in the example below:

string logMessage: "John’s virtual machine moved to Australia"

5defined in FoE (Framework of Evidence) [TRAR+15]

FP7-ICT-2011-8-317550-A4CLOUD Page 56 of 94

D:D-6.2: Accountability Toolset Validation Report

string resource: "virtual machine"

string owner: "John"

3.4.3.4 DTMT to TL (data transfer logs)

DTMT outsources all its logs to TL in JSON format. The log itself is simple text; an example of
a log entry describing a new server creation is provided below:

"Create a new \"Server\" with id \"01asb2129231572321"\

name \"France Server\" in hypervisor \"frnc125\"

3.4.3.5 A-PPLE to TL

A-PPLE sends internal logs and notifications to the data subjects through the TL in JSON format.
Below is an example of an internal log:

1 {
2 "type":"Personal Data Deleted",

3 "value":"Event associated with personal data running belonging to

WMIjiSqY1yIbs deleted"

4 }

Below is an example of a notification:

1 {
2 "type":"Policy violation",

3 "value":"This is a policy violation notification"

4 }

3.4.3.6 IMT to A-PPLE (end user notification)

IMT provides A-PPLE with the necessary information to notify end users, if this information has
been given to IMT.

The payload sent if notifying users one by one:

1 {
2 "owner": "johndoe",

3 "resource": "creditcard",

4 "message": "Your credit card was compromised, please cancel it."

5 }

The payload sent if A-PPLE should notify all users having a resource is the following:

1 {
2 "resource": "creditcard",

3 "message": "Your credit card was compromised, please cancel it."

4 }

FP7-ICT-2011-8-317550-A4CLOUD Page 57 of 94

D:D-6.2: Accountability Toolset Validation Report

3.4.3.7 IMT to IMT (subscriber notification)

Listing A.2 in Appendix A shows a notification sent by IMT about incident types to which the
cloud customer subscribes. The same data format as the one used by AAS to IMT and AT is
used.

3.4.4 High-Level description of the A4Cloud toolkit

In the following, we provide description of the tools that are subject to validation. These de-
scription have been updated compared to the their counterparts in the previous deliverable and
milestones of D-6. This update includes, in particular, additions specifically geared towards vali-
dation, like validation interfaces and validation-specific information relating to the data structures
used by the tools.

Incident Management Tool

The Incident Management Tool (IMT) is aimed at helping Cloud Service Providers (CSP) in
handling anomalies and detected violations in cloud environments; it does not have an end-user
interface6. Instances of IMT are capable of sending and receiving incident reports from each
other through subscriptions, thus allowing each link in the cloud delivery chain to be informed
about relevant incidents. When the IMT receives an incident report, an operator can create a
local version of this incident report (which belongs to another entity) and notify end users through
the A-PPL Engine and possibly other instances of IMT subscribing to this new incident. As a
basis for our proposed specification, we have investigated functional aspects of how incident
information should be represented and shared.

At some point, the CSP experiencing an incident needs to notify its cloud customers – that
is other providers in the cloud supply chain buying services from the CSP. By mutual agreement
it decides which notifications to be sent; by the provider listing which types of incidents the
cloud customer is allowed to access, and the cloud customer subscribing to the incident types
he needs. In order to allow the cloud provider to fulfil any legal obligations to notify the cloud
customer, he could, when obligated by law, send such notifications whether the cloud customer
subscribes to them or not.

Figure 3.15 shows an example of the relationship between service providers and services
used, and thus provides an example of the amount of unneeded or unwanted incident informa-
tion a subscriber could receive if the defined triggers are not taken into account. For example,
in the case of cloud B, it only uses a fraction of the services offered by cloud C and D. If cloud
B was notified about all incidents at C and D, this would include a large amount of unneeded
information relating to services not in use by cloud B. Additionally if cloud D has thousands of
customers, the overhead of negotiating and defining which incident information to share would
become noticeable. Therefore, it is expected to be better to use the hybrid approach, where
the subscriber defines what he wants to be notified about and the provider additionally pushes
all information required by law to the subscriber by using mandatory notifications that could be
defined for each subscriber.

IMT provides two interfaces from which incident information can be added: the graphical user
interface – supporting human incident handlers – and the RESTful API – supporting machine to
machine interaction. Through the graphical user interface, the incident handler can examine and

6End-user interaction is handled by the Remediation and Redress Tool (RRT).

FP7-ICT-2011-8-317550-A4CLOUD Page 58 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 3.15: Data flow in supply chain. Each cloud represents a service provider. Each coloured
square represents the services used by the subscriber. The coloured square inside each stip-
pled square, represents the data or parts of the services actually used by the subscriber.

manage incident information as well as notify both subscribing cloud customers and end users.
Through the API, detective tools such as DTMT and AAS can provide incident information to
IMT. The API is also used to exchange incident information between different instances of IMT.
Incidents provided through the API are encoded using a simple, extensible JSON format.

IMT also provides several API-methods to support tool validation:

• Notify subscribers:
GET /api/1.0/validation/incidents/{id}/notify

Substitute {id} for the ID of the incident for which you want to notify subscribers

• Notify end users:
POST /api/1.0/validation/incidents/{id}/notify-end-users

Must include ”message”: ”MESSAGE HERE”
Substitute {id} for the ID of the incident for which you want to notify end users

• Get all incidents:
GET /api/1.0/validation/incidents

• Get a specific incident:
GET /api/1.0/validation/incidents/{id}

Additionally, IMT can be configured to interact with the Assertion Tool passive mode by setting
the configuration variable AT ACTIVE = True. This makes IMT push any relevant information
directly to the Assertion Tool upon information being received or sent.

3.4.4.1 Data Transfer Monitoring Tool

The Data Transfer Monitoring Tool (DTMT) enables cloud service infrastructure to demonstrate
compliance with respect to the location where the personal data processing occurs. The tool
automates the collection of evidence, which demonstrates that obligations concerning personal
data transfers are being carried out properly. To this end, it observes and analyze the operations
performed on personal data which involves transfer at the infrastructure level, for example when
performing load-balancing, or creating backups and then storing or deploying them in different
hosts. These operations are accumulated in memory by a rule-based engine as the facts about
the infrastructure layer. Combining with rules defined from agreements in user data between
cloud customer and cloud provider, DTMT can identify whether all transfers were compliant

FP7-ICT-2011-8-317550-A4CLOUD Page 59 of 94

/api/1.0/validation/incidents/{id}/notify
/api/1.0/validation/incidents/{id}/notify-end-users
/api/1.0/validation/incidents
/api/1.0/validation/incidents/{id}

D:D-6.2: Accountability Toolset Validation Report

with the authorizations from the Data Protection Authorities obtained beforehand by the data
controller. In this way, policy violations can be detected and notified to data controller.

Part of the necessary information to monitor data transfers can be obtained from machine-
readable policies specifying accountability obligations, such as A-PPL policies, but also the
constraints about which parties, and geographical locations of physical hosts or datacenters are
allowed for a given data set can be manually configured in the tool. Upon identification of a
potential violation, further data can be collected to provide supporting evidence of an incident.
Data controllers and processors can rely on tools such as AAS and IMT to perform further
investigation about incidents. After the incident handling has been performed, the stakeholders
can be notified using functionality of IMT combined with the A-PPL Engine. Notice that the tools
can also be set up to handle notifications automatically, that is, without human intervention which
is not advisable in most use cases. Therefore, notifications can be triggered by the auditor, but
also automatically by of DTMT using the A-PPL Engine’s interface.

The DTMT tool inputs and outputs include:

• Inputs

– An A-PPL policy identifying the data controller and its resources in the IAAS;

– IAAS configuration : identifying server IP addresses, identifiers and their physical
location;

– Keys and service endpoints for the transparency log;

– Runtime information from the IAAS: all the network traffic to and from the Openstack
components is intercepted and analyzed - basically restful API calls.

• Outputs

– Log entries to TL

– Potential violation notifications to A-PPLE

3.4.4.2 Accountable-PPL Engine

The A-PPL Engine (A-PPLE) is an extension of the already existing PPL Engine [TNR11], and is
defined as the tool for enforcing an accountability policy written in the new A-PPL language (see
deliverable D34.2 [dOSP+15]). Thanks to this new language, the A-PPL Engine enforces new
accountability related obligations. The A-PPL Engine mainly enforces data handling obligations
and some logging and notification rules related to the data handling rules.

The A-PPL Engine inherits different components from the existing PPL Engine, namely, the
Policy Decision Point (PDP), the Policy Enforcement Point (PEP) and the Policy Administration
Point (PAP) which were part of the underlying HERAS7 access control engine. These compo-
nents have been modified/extended in order to be able to enforce new obligations defined in
A-PPL. The enforcement of the A-PPL policy is coordinated by the PEP which associates the
rules to be enforced to the corresponding data and further informs the Obligation Handler. The
Obligation handler applies all the enforcement actions except the logging ones which are for-
warded to the Logging Handler. The reason why there exists a separate Logging Handler is that
this component is also continuously logging all actions taken over the data. The A-PPL Engine

7http://www.herasaf.org/

FP7-ICT-2011-8-317550-A4CLOUD Page 60 of 94

D:D-6.2: Accountability Toolset Validation Report

also defines a RESTful API to provide an entry point to the A-PPL Engine. More details about
A-PPLE can be found in deliverable D43.2 [dOSoTP+15a].

The outputs of the A-PPL Engine are:

• logs (defined in JSON format) generated by the Logging Handler;

• notifications generated following an A-PPL policy obligation (for example upon a policy
violation);

• personal data in case the access to retrieve the PII is granted.

3.4.4.3 Audit Agent System

The Audit Agent System (AAS) enables the automated audit of multi-tenant and multi-layer
cloud applications and cloud infrastructures for compliance with custom-defined policies, using
software agents. Agents can be deployed at different cloud architectural layers (i.e., network,
host, hypervisor, IaaS, PaaS, SaaS) with the purpose of evidence collection and processing as
well as generating audit reports.

The tool configures software agents and deploys them in agent runtime environments lo-
cated at different cloud architectural layers. The type of agent that’s being deployed and there-
fore the data collected depends on the audit task. The requirements defined in the policies
or manually by the auditor are evaluated against the collected data (evidence). The evalua-
tion results are presented in a web-based dashboard and may also be used in the automatic
generation of audit report documents.

The outputs of the AAS are:

• Evidence Records (defined in the Framework of Evidence [TRAR+15]) stored inside the
AASs local evidence store.

• Notification to IMT about new incidents.

• Logs for each agent (regardless of whether it is a Client or a Core AAS).

• Presentation of audit task results via the AAS web dashboard.

AAS provides the following APIs for tool validation support:

• AAS provides a rest call returning the recipient key for the user ”aas” ath the TL instance
of APPLE. This is required in order to check the compliance of incidents created by AAS
containing messages logged by APPLE. The recipient key can be requested using the
following REST call:
GET /rest/validation/getAppleTlAasRecipientKey

• A complete log of all actions performed for an audit task is offered by the:

de.hfu .A4Cloud.validationLog.ValidationLogAgent

Since AAS is a distributed system, this agent receives several information from any agent
registered with its execution environment (JADE container) and persists it inside /opt/-
Core/log/validation.txt All information received have the following format:

FP7-ICT-2011-8-317550-A4CLOUD Page 61 of 94

/rest/validation/getAppleTlAasRecipientKey

D:D-6.2: Accountability Toolset Validation Report

<timestamp> <action> <additional information>

These distributed logs can be requested using the following REST call:
GET /rest/validation/getValidationLogs

• All incidents notified to IMT are also sent to the AT for further assertions

3.4.4.4 Transparency Log

The Transparency Log (TL) is a secure and privacy-friendly one-way messaging system, en-
abling senders to send messages to potentially offline recipients. TL is asynchronous, tamper-
evident, encrypts messages using state-of-the-art algorithms, prevents some information leaks,
publicly verifiable, safe to outsource, enables both sender and recipient to prove several prop-
erties of sent messages, and supports distributed settings. TL’s primary role in A4Cloud is to
facilitate the communication of data from data controllers to data subjects. TL can be seen as a
secure and privacy friendly replacement of email where the sender is fixed (the data controller)
and recipients (data subjects) have to register at the sender (similar to providing their email
address). In A4Cloud, other tools will provide notifications generated at the data controller that
should be parsed by other tools used by a data subject. TL plays the role of a privacy friendly
transport of these notifications. TL is also used as a secure log by A-PPLE and DTMT, and as
an evidence store by AAS.

TL consists of two components: the sender and the recipient. Both the sender and recipient
provide RESTful API over HTTPS. The sender is used for sending messages to recipients.
Recipients register at the sender API by providing their public key. Private keys for recipients
are stored in the recipient component, that can be used to reconstruct all messages sent to the
recipient. The sender component is intended to run at the entity sending messages, such as
the service provider. The recipient component should run locally at the recipient, such as data
subjects.

Assuming a registered recipient, the TL tool input and output are:

• Input: A sequence of bytes for a recipient, using the TL sender.

• Output: The sequence of bytes sent to the recipient, using the TL recipient.

TL uses JSON and base64 encoding of data in different parts of its API, see the API documenta-
tion. The output can also be retrieved as raw bytes. Depending on use-case, the bytes stored in
TL represent different data. This representation is use-case specific, and not the responsibility
of TL to specify.

3.5 Summary

In this chapter, we first provided a description of the architecture of the assertion framework, and
detailed the description of its main component, the assertion tool. We then provided an overview
the A4Cloud toolkit that is considered for validation on D-6 WP and presented the APIs for tools
validation.

FP7-ICT-2011-8-317550-A4CLOUD Page 62 of 94

/rest/validation/getValidationLogs

Chapter 4

Validation Scenarios and Demo

As part of WP D-7 a realistic cloud service supply chain has been developed and deployed in
order to demonstrate the accountability framework and the respective tools developed by the
A4Cloud project. A scenario involving commercial and institutional actors in the domain of the
wearables has been developed in order to perform concrete accountability tasks. This scenario
constitutes a realistic and topical scenario, in which the involved business actors have to take
the appropriate actions to ensure that the collection and processing of the customers’ personal
data are handled responsibly, based on the established regulations and declared security orga-
nizational policies.

We have harnessed this cloud environment in order to validate the A4Cloud policy-enforcement
tool chain. We have defined five validation scenarios that enable different accountability prop-
erties of the tools to be validated in the context of the cloud service supply chain for wearables.
These scenarios have then be used to automatically validate the accountability properties of the
tools in two concrete deployments of the supply chain provided by partners ATC and HFU.

In this chapter, we first provide an overview of the D-7 wearable scenario in Section 4.1. In
Section 4.2, we then present the five validation scenarios that we have developed as part of D-6
and how they are have been used for the accountability tool validation using the Assertion Tool.
Finally, we provide a summary in Section 4.3.

4.1 Wearable scenario

The demonstration scenario in A4Cloud is set up from the perspective of the Wearable Co, which
is the cloud customer and data controller offering the wearables service to their customers. This
service is provided by Kardio-Mon with the support of Map-on-Web, and the DataSpacer. In this
scenario, the Wearable Co regulates the type of data that should be collected from the Wearable
Co Customers, the purpose for doing so and the accountability policies, under which this data
will be processed and stored in the cloud. Such policies are compiled by Kardio-Mon and agreed
with the Wearable Co.

Overview of the scenarios and the involved actors. Figure 4.1 shows an overview of the
wearable scenario deployment.

FP7-ICT-2011-8-317550-A4CLOUD Page 63 of 94

D:D-6.2: Accountability Toolset Validation Report

Figure 4.1: The deployment of the A4Cloud tools for the wearable use case scenario.

The DataSpacer operates as an independent IaaS cloud provider, offering cloud storage and
computation services out of a number of datacentres located in different geographical locations
around Europe and US. Those data centres are governed by different regulatory frameworks
based on their location. DataSpacer expects to collaborate with cloud service providers hosting
any kind of personal data. Thus, DataSpacer has to implement by default security and privacy
mechanisms, while the relevant accountability tools, namely DTMT, AAS and IMT, have to be
deployed to enable DataSpacer providing verification on their data handling processes upon ad-
hoc requests from the collaborating cloud service providers or the governing cloud supervisor
authorities and auditors.

Map-on-Web operates as a SaaS provider for delivering various data management solu-
tions over large data streams, including data aggregation and smart visualisations. This data
could be either public or personal data, thus Map-on-Web should consider for the appropriate
accountability measures to process this data in a responsible way. These measures include the
deployment of A-PPLE, AAS and IMT in their space. Additionally, Map-on-Web needs cloud

FP7-ICT-2011-8-317550-A4CLOUD Page 64 of 94

D:D-6.2: Accountability Toolset Validation Report

storage facilities and, to this end, DataSpacer is selected.
Another actor involved in the wearable scenario is Kardio-Mon. This is a SaaS cloud provider,

which delivers an in-house development for a Wearable Service, aiming to support potential
cloud customers to deploy their own wearable platform services. Such services include the col-
lection and processing of personal data from individuals, as well as advanced visualisations,
which are directly fed from Map-on-Web as a third party provider of Kardio-Mon. On top of
that, Kardio-Mon needs storage facilities which are provided by DataSpacer. Thus, the devel-
opment and operation of the customised Wearable Service (for a specific client of Kardio-Mon)
should take into account the deployment of the appropriate accountability tools. The tools in-
clude A-PPLE, AAS and IMT and they should be put in operation, as soon as an enforceable
set of accountability policies has been agreed between Kardio-Mon and the cloud customer. It
should be noted that these policies have been specified to reflect the capabilities of Kardio-Mon,
Map-on-Web, and DataSpacer to implement specific security and privacy measures.

Scenario implementation and demo. For the implementation of the scenario from an ac-
countability perspective, each actor involved in the provision of the wearable service use case
should address the functional elements of the accountability lifecycle, which has been introduced
in D42.4. In technical terms, each actor should be able to demonstrate how they follow the re-
spective functional elements of the lifecycle, adopt the accountability practices and implement
the respective accountability mechanisms. The implementation of the relevant mechanisms is
supported by the A4Cloud tools, which are set up in the environment of each actor to facilitate
specific accountability support services.

Figure 4.2: The scenarios for the accomplishment of the wearable service

FP7-ICT-2011-8-317550-A4CLOUD Page 65 of 94

D:D-6.2: Accountability Toolset Validation Report

For the design, development and execution of the wearable scenario, we emphasize on key
activities that should be performed by each actor, as presented in Figure 4.2. As presented
there, the main demonstration scenario is instantiated into five smaller scenarios, each one
identifying a main actor to run the respective scenario. These scenarios involve all A4Cloud
tools.

For this deliverable, we focus on the scenarios that involve the interaction of the A4Cloud
tools for policy enforcement. Thus, in the scenario Demo 2: ”Policy Implementation”, we demon-
strate the use of the policy definition, validation and enforcement tools from the perspective of
the cloud provider. In this scenario, Kardio-Mon uses DPPT to create accountability policies.
This process involves the interaction with the Wearable Co, who exploits AccLab to perform a
matching between the abstract policy statements (capabilities) being advertised by Kardio-Mon
with the provisions of the accountability policies. These tools can run ad-hoc on one’s desktop
machine.

Kardio-Mon hosts A-PPLE, which is used to enforce the accountability policies for the man-
agement of personal data. Thus, the policies agreed between Kardio-Mon and the Wearable Co
are submitted to A-PPLE through the DPPT. In turn, these policies are exploited by Kardio-Mon
to control the collection and processing of the personal data of the Wearable Co Customers.

During the operation of the Wearable service, the interaction of the Wearable service being
maintained by Kardio-Mon with the Map-on-Web services and the storage service facilities of
DataSpacer are monitored by a set of tools. More specifically, the A-PPLE instance of Kardio-
Mon generates logs on how this provider operates the respective data handling processes in
terms of the data access and retention rules of the policies. Kardio-Mon is also deploying AAS
to collect logs from all the operations happening across the cloud protocol stack of this provider
and assess accountability in terms of data retention and integrity. These two tools are used from
Kardio-Mon to enforce the data handling processes against the wearable service and the Map-
on-Web service. Furthermore, AAS is used by Kardio-Mon to collect loges and create evidence
records on the practices occurred at runtime. The collection of logs and the storage of evidence
records is supported by TL. AAS is further used in scenario Demo 4: ”Monitoring and Audit”, in
which we present the perspective of Cloud Auditor to perform an audit task on Kardio-Mon.

In order to implement accountability on the storage layer, DataSpacer has deployed two
tools, namely DTMT to generate logs on the data handling processes with respect to data trans-
fer rules agreed in the accountability policies and AAS to collect logs and create evidence in the
environment of this IaaS cloud provider. Again, TL is integrated with AAS and DTMT to facilitate
logs collection and storage of the DTMT evidence records. AAS is also used in scenario Demo
4: ”Monitoring and Audit”, to enable a Cloud Auditor perform an audit task on DataSpacer.

In the scenario Demo 3: ”Incident Management”, we present the perspective of the cloud
providers in order to tackle with the detection of abnormal operations at runtime. At this point,
Kardio-Mon and DataSpacer can automatically detect security breaches or incidents on potential
policy violations through the deployed AAS and DTMT (only for DataSpacer) tools. For the
management of the incidents, both Kardio-Mon and DataSpacer deploy IMT. This tool is used
to communicate the incidents detected from AAS and DTMT. For example, in case that a data
transfer incident is detected at DTMT, the IMT instance of DataSpacer is triggered. The IMT
operator of DataSpacer assesses the incident and decides on whether to communicate this to
the IMT instance of Kardio-Mon. In this case, the IMT operator of Kardio-Mon has to assess the
received incident and decide on how to handle this. In case that this incident must be notified to
the Wearable Co and their customers, IMT delegates the incident reporting process to A-PPLE.

On Demo 5: ”Data Subject Controls” scenario, we present the capabilities offered to the

FP7-ICT-2011-8-317550-A4CLOUD Page 66 of 94

D:D-6.2: Accountability Toolset Validation Report

Wearable Co Customers as cloud subjects to control the disclosure of their personal data in
Kardio-Mon and the respective third party cloud providers (Map-on-Web and DataSpacer). This
is done through DT, which integrates TL to secure the communication of the cloud subject device
with the A-PPLE instance of Kardio-Mon. DT embeds RRT as a tool to provide suggestions on
possible remediation to the Wearable Co Customers.

Validation scenarios derived from the wearable scenario. In D-6, we consider five valida-
tion scenarios which are directly linked to the wearable scenario.

• Intrusion Detection. Kardio-Mon hosts A-PPLE, which is used to enforce the accountability
policies for the management of personal data. The Intrusion Detection validation scenario
concerns a data protection problem during which an attacker tries to get unauthorized
access to data.

• Data Retention. Potential data retention violations may be recognized in the service,
based on the existence of PII in virtual machine snapshots at Data-Spacer. The Data
Retention validation scenario aimed at validating the compliance with the data retention
requirements stated in the related policy.

• Data Transfer across data centers. The accountability policy may specify that data col-
lected and processed by Kardio-Mon, for instance, should be only maintained in the
servers residing in the EU territory. For some reasons, the related storage volume may be
detached from the EU servers and attached to another server cluster in US (see red links
in Figure 4.1). This is a data transfer action that comprises an exception to the policy and
should be raised. This scenario aimed at validating the compliance with the data transfer
requirements.

• Data transfer across hosts. DataSpacer implements security and privacy mechanisms.
To this end, the relevant accountability tools, namely DTMT, AAS and IMT, have to be
deployed to enable DataSpacer providing verification on their data handling processes
upon ad-hoc requests from the collaborating cloud service providers or the governing
cloud supervisor authorities and auditors. The aim of this validation scenario is to validate
that the incidents detected by DTMT are correctly handled and communicated to IMT.

• End User Notification. The Wearable Co would not necessarily receive the required inci-
dent information from Kardio-Mon or DataSpacer in order to notify their end users. To this
end, IMT receives detected incidents from DTMT and AAS, and utilizes A-PPLE to notify
end users about incidents relevant for them. This validation scenario allows us to validate
that the end user notifications are correctly provided to A-PPLE.

4.2 Validation scenarios

We have defined five validation scenarios that allow different accountability properties of the
tools to be validated. In the following we present each of these scenarios in two different steps:

• General description of the scenario and how it concerns different A4Cloud tools.

• Detailed description of how the scenario is used for validation of specific accountability
properties using the Assertion Tool.

FP7-ICT-2011-8-317550-A4CLOUD Page 67 of 94

D:D-6.2: Accountability Toolset Validation Report

4.2.1 Intrusion detection validation scenario

General description

The Intrusion Detection validation scenario concerns a data protection problem during which an
attacker tries to get unauthorized access to data.

The main goal of A-PPLE tool is to enforce the accountability policies for the management
of personal data. Kardio-Mon hosts A-PPLE to control the collection and processing of the
personal data of the Wearable Co Customers, by configuring A-PPLE with the necessary ac-
countability policies. Whenever an intrusion that violates the policies occurs, A-PPLE should
detect and log information related to this intrusion. Other accountability enforcement tools, such
as AAS, also contribute to the accountability enforcement, for example, AAS creates an Evi-
denceRecord related for the intrusion, and also notifies IMT about it.

This scenario aims at validating, in case of an intrusion detection, that A-PPLE logged all
related events, and that a notification is communicated to IMT. It covers several accountability
properties, in particular:

P1 A transparency property: “Accesses from third-parties to data are made explicit.”

P2 A responsiveness property: “Intrusion detection attempts are notified in a timely manner.”

P3 A responsibility property: “The responsible entity for intrusion detection is made explicit
and information about the source of the intrusion is made available.”

Figure 4.3: Intrusion detection audit task

Additionally, given that the timely notification of incidents is an important aspect, it could be
useful to quantitatively evaluate the delay between the time of the incident and the time of notifi-
cation. The Catalog of Accountability Metrics does not contain a metric for this aspect. However,

FP7-ICT-2011-8-317550-A4CLOUD Page 68 of 94

D:D-6.2: Accountability Toolset Validation Report

we can define a new metric, called Average Timing of Notification (Metric 40), following the ap-
proach defined by WP C-5. This metric describes quantitatively how timely the notifications are
delivered to interested stakeholders (e.g., end-users, administrators, etc)

• Input: This metric is computed using the following parameters:

– N – Total number of notifications for a given period of time

– Ai – Time of the i-th notification during the given period of time, expressed in UNIX
time

– Bi – Time of the i-th incident during the given period of time, expressed in UNIX time

• Formulation and output: Output =

N∑
i=1

(Ai−Bi)

N

This metric can be used in runtime-based validations, such as our validation methodology.
This validation scenario involves the following four A4Cloud tools: A-PPLE, AAS, IMT, and

TL. The interactions between these tools are shown in Figure 4.3. In the scenario, we consider
intrusions consisting in private data from a subject being accessed by an unauthorized person a
number of times greater than the allowed threshold. This threshold is specified by the PII policy
which is installed on A-PPLE. A-PPLE logs all the PII accessing events in the TL instance. An
intrusion attempt can then be determined by AAS by analyzing the access logs written by A-
PPLE on TL. This can be achieved by running the Intrusion Attempt Detection Audit Task, which
is designed to communicate with the TL instance. When AAS finds an intrusion attempt (the
no. of PII accesses exceeded the configured threshold), it should transform all events related to
these accesses into an EvidenceRecord , which is then stored inside the Evidence Store Finally,
AAS transforms the created EvidenceRecord to a notification (in JSON notation), and sends it
to IMT.

Validation scenario and tool validation

This validation scenario consists of the following steps:

1. Start the Intrusion Detection Audit Task using the AAS setAuditTask REST call. This
triggers AAS to checks periodically whether the number of PII accesses is greater than a
certain threshold.

2. Configure the PII policy on A-PPLE. This policy specifies the threshold for accessing the
PII.

3. Simulate an intrusion by accessing the same PII number of times greater than the allowed
threshold. After simulating the intrusion, AAS should detect it, and then notify IMT about
it.

Performing this validation scenario, we can use the Assertion Tool to assert the following
tool-specific accountability-related properties:

T1 Check whether A-PPLE logs all the PII accesses

T2 Check whether AAS created an EvidenceRecord

T3 Verify that the EvidenceRecord created by AAS contains all the events logged by A-PPLE.

FP7-ICT-2011-8-317550-A4CLOUD Page 69 of 94

D:D-6.2: Accountability Toolset Validation Report

T4 Check whether IMT received a notification from AAS

T5 Verify that IMT received the notification from AAS on time.

T6 Verify that the notification received by IMT matches the EvidenceRecord stored by AAS
in the Evidence Store.

Note that these tool-specific assertions allow the validation of the accountability properties P1–
P3 introduced in the beginning: P1 follows from T1, T3 and T6, P2 from T5, and P3 from the
contents of the evidence created in T2 and the contents of the notification T6.

Evidence
Store

 1. AT creates an Intrusion Detection Task
 2. AT creates PII policy on A-PPLE
 3. At simulates an intrusion by accessing PII > threshold times
 4. A-PPLE logs all the accessing attempts to the TL
 5. AAS fetches all the A-PPLE logs from the TL, and checks the
 number of accesses
 6. Once AAS finds a suspicious patterns, it creates an Evidence
 Record with all the related events.
 7. AAS transformed the Evidence Record into a JSON
 notification and sends it to IMT

AT

A-PPLE

IMT

AAS

TL

1. Create
Audit Task

2. Create PII

3. Intrusion Attempt

4. Log Data
5. Fetch Logs

6. Evidence
Record

7. Notification

Tool Step
AT Action

Figure 4.4: AT driving the intrusion detection validation scenario

Figure 4.4 shows how AT can interact (blue links) with the a4Cloud tools (A-PPLE, AAS,
IMT) to execute the Intrusion Detection validation case (Section 4.2.1). AT starts the validation
case by triggering AAS for intrusion detection (Step 1), then creates a PII at A-PPLE (Step 2),
and finally simulates an intrusion by accessing the PII a number of times which is greater than
the configured threshold (Step 3). Figure 4.4 also shows the internal interactions between the
A4Cloud tools: A-PPLE logs to TL all PII accesses (Step 4), AAS pulls the A-PPLE logs from TL
(Step 5), AAS creates an EvidenceRecord with all the related events once it detects a suspicious
pattern (Step 6), and AAS notifies IMT about the detected intrusion (Step 7).

During the execution of the validation case, AT also gets some data from A4Cloud tools,
in particular the A-PPLE logs, AAS EvidenceRecord , and IMT notification. AT then uses the
received information to verify the assertions to validate the intrusion detection case. Figure 4.5
shows the information AT gets from the A4cloud tools, and also the assertions that AT checks
(red bullets): A-PPLE logs all the PII accesses, AAS created an EvidenceRecord that contains

FP7-ICT-2011-8-317550-A4CLOUD Page 70 of 94

D:D-6.2: Accountability Toolset Validation Report

Evidence
Store

AT

A-PPLE

IMT

AAS
5. Get AAS Evidences

2. Get APPLE Logs

7. Get the
Notification

TL

6. Intrusion
Notification

3. Get APPLE Logs 1. Store/Get Logs

 a. AT checks whether A-PPLE logs all the PII accesses
 b. AT checks whether:
 - AAS created an Evidence Record
 - All the A-PPLE logs appear in the Record
 c. AT checks whether:
 - IMT received a notification from AAS (and on time)
 - IMT's Notification matches the Evidence Record

a

b

c

4. Evidence
Record

AT Crawler

AT Assertion

Figure 4.5: AT checking assertions related to intrusion detection validation scenario

Listing 4.1: Java code for intrusion detection validation scenario

1 public class IntrusionDetectionVS {
2 // I. Declare your tools

3 AASTool aas = new AASTool ();

4 AppleTool apple = new AppleTool ();

5 IMTTool imt = new IMTTool ();

6

7 // II. Setup Phase

8 public void setUp ()

9 { RestModule.initializeInfrastructure (); }
10

11 // III. Validation Scenario

12 public void scenario () {
13 // a. Initialize the system & add the policy

14 int threshold = 5;

15 aas.createIntrusionDetectionAuditTask(threshold);

16 apple.createPII("policies/panosCountryPii.xml");

17

18 // b. Attempt to access PII more than ‘threshold ‘ times

19 for (int i = 0; i <= threshold; ++i)

20 { apple.accessPIIFromPanos (); }
21

22 // c. Assert!

23 ACCOUNT.intrusionDetection("Panos", "Country", threshold);

24 }
25 }

FP7-ICT-2011-8-317550-A4CLOUD Page 71 of 94

D:D-6.2: Accountability Toolset Validation Report

all the events logged by A-PPLE, and IMT received a notification, on time, which is consistent
with the AAS EvidenceRecord .

Listing 4.1 presents the executable Java representation of the Intrusion Detection validation
scenario. It consists of three parts, respectively initializing the tools used as part of the scenario.
Note that the TL instance is not made explicit here, because it is used as an implicit communi-
cation channel between the A-PPLE and AAS tools. In the second part some setup code for the
AT is defined. The third part represents the validation scenario itself. This scenario, due to its
conciseness and use of abstractions (methods, assertion), is essentially self-explanatory. Note
that, as described in the previous chapter, no code is included for the gathering of information
from logs and notification, because the AT handles this aspect implicitly and automatically us-
ing the default strategy for information gathering that requests the necessary information before
each assertion is checked.

The assertion successfulAccess() is a complex one, which verifies that A-PPLE logs
all the events related to some intrusion attempts, and that all these events are present in the
related EvidenceRecord that results in a correct notification to be sent from AAS to IMT. Such
an assertion can be explicitly defined as a conjunction of three tool specific assertions:

• apple.intrusionDetection(): checks whether A-PPLE logs all the related events.

• aas.intrusionDetection(): checks whether all the events logged by A-PPLE are present
in the AAS EvidenceRecord .

• imt.intrusionDetection(): checks whether AAS sends the right notification to IMT
and that IMT propagates it correctly.

Remember that the AT calls these predefined tool-specific assertions automatically when the
complex assertion of the validation scenario is interpreted.

Using this validation scenario we have successfully validated the accountability properties
P1–P3 mentioned over the cloud supply chain deployed as part of the A4Cloud project.

4.2.2 Data retention validation scenario

General description

An auditor that investigates the compliance of Kardio-Mon and Data-Spacer with data retention
policies can use the AAS tool to automate evidence collection and evaluation in a continuous
manner. Potential data retention violations are recognized in the service, based on the exis-
tence of PII in virtual machine snapshots at Data-Spacer. Snapshots can violate data retention
policies, if they hold PII for which the maximum retention time was exceeded. The Data Reten-
tion validation scenario aimed at validating the compliance with the data retention requirements
stated in the related policy. In this sense, the Data Retention validation scenario concerns a
data protection problem consisting in copies of data existing beyond the lifetime stated in a
corresponding policy. This scenario covers several accountability properties, in particular:

P1 A transparency property: “Data copies are made explicit.”

P2 A responsiveness property: “Data retention issues are notified in a timely manner.”

P3 A responsibility property: “The responsible entity for a copy is available.”

FP7-ICT-2011-8-317550-A4CLOUD Page 72 of 94

D:D-6.2: Accountability Toolset Validation Report

With regards to accountability metrics associated to this validation scenario, we can remark
that the metric “Record of Data Collection, Creation, and Update” (Metric 7) evaluates a critical
aspect of this scenario. In order to track the compliance of data retention periods, it is necessary
that the dates associated to each piece of data is recorded:

This metric describes a percentage of the extent to which date is recorded when collecting,
creating and updating private records. Date of data collection, creation and update is relevant
for complying with data retention schedules.

• Input: This metric is computed using the following parameters:

– N – Number of collected PII records for which the date is indicated

– T – Total number of collected PII records

• Formulation and output: Output = (N/T) · 100

Figure 4.6: Data retention audit task

The scenario involves the following A4Cloud tools: A-PPLE, AAS, IMT, and TL. The main
interactions involved in the data retention scenario are shown in Figure 4.6.

Validation scenario and tool validation

This validation scenario consists of the following steps:

FP7-ICT-2011-8-317550-A4CLOUD Page 73 of 94

D:D-6.2: Accountability Toolset Validation Report

1. Start the PII Data Retention Audit Task using the setAuditTask REST call. This triggers
the PiiApplMessageCheckAgent to periodically pull all create and delete events from the
A-PPLE’s TL instance, and the PiiSnapshotCheckAgent pulls periodically snapshot exis-
tence information for a defined virtual machine. Both store their insights inside the AAS
Evidence Store. The PiiDataRetentionPolicyEvaluationAgent decides if there has been
an policy violation, depending on the create/delete messages as well as the VM snapshot
meta data and it’s timestamp.

2. Configure PII policy on A-PPLE. This policy specifies the data retention time. A-PPLE
will force this policy and delete this PII from its database. A-PPLE logs to TL all the
create/delete events.

3. Simulate a violation by creating a snapshot containing the related PII before the retention
time. When AAS recognizes a suspicious pattern (existence of a snapshot that contains
the PII after the retention time), it transforms all the related events into an EvidenceRe-
cord , which is then persisted inside the Evidence Store. AAS also creates an IMT JSON
notification form the EvidenceRecord , and sends it to IMT.

Performing this validation scenario, we can use the Assertion Tool to assert the following
tool-specific accountability-related properties:

T1 Check whether A-PPLE logs all creation/deletion of the PII.

T2 Check that AAS keeps track of data copies, snapshots in particular.

T3 Check whether AAS created a violation related EvidenceRecord including an offending
snapshot, that is, a data copy live after the retention period.

T4 Verify that the EvidenceRecord created by AAS contains all the events logged by A-PPLE.

T5 Check whether IMT received a notification from AAS

T6 Verify that IMT received the notification from AAS on time.

T7 Verify that the notification received by IMT matches the EvidenceRecord stored by AAS
in the Evidence Store.

Once again, these tool-specific validations entail the validation of the accountability properties
introduced in the beginning: P1 follows from T2, T3 and T7, P2 follows from T6, and P3 from T4
and T7.

AT can interact with the A4Cloud tools (A-PPLE, AAS, IMT) and an OpenStack node to ex-
ecute the Data Retention validation scenario. The required interactions are shown in Figure 4.7
(blue links), together with the a4Cloud tools internal interactions (black links). To execute the
Data Retention validation scenario, AT essentially (see Section 4.2.1) starts the PII Data Reten-
tion Audit Task (Step 1), creates PII on A-PPLE (Step 2) and simulates a violation by creating a
snapshot containing the related PII before the retention time. A4cloud tools and OpenStack also
interact internally: A-PPLE logs to TL (Step 4), AAS gets data/logs from TL’s A-PPLE instance
and OpenStack VMs (Steps 5-6), AAS creates an EvidenceRecord (Step 7) and notifies IMT
(Step 8).

Figure 4.8 shows the information AT receives from the A4cloud tools, and also the asser-
tions that AT checks (red bullets): A-PPLE logs all the PII creation/deletion, AAS created an

FP7-ICT-2011-8-317550-A4CLOUD Page 74 of 94

D:D-6.2: Accountability Toolset Validation Report

Evidence
Store

 1. AT starts Data Retention Audit Task
 2. AT creates PII policy (sets retention time for t)
 3. AT creates snapshots to simulate violation (before t).
 4. A-PPLE logs all create/delete snapshots events to TL
 5. AAS fetches all the A-PPLE create/delete logs from TL
 6. AAS pulls snapshot existence information from VMs
 7. Once AAS finds a policy violation based on the collected
 data, it creates an Evidence Record.
 8. AAS transformed the Evidence Record into a JSON
 notification and sends it to IMT

AT

A-PPLE

IMT

AAS

TL

1. Create
Audit Task

2. Create PII

4. Log Data
5. Fetch Logs

7. Evidence
Record

8. Notification 3. Create
SnapShot

6. snapshot
information

OpenStack

Tool Step
AT Action

Figure 4.7: AT driving data retention validation scenario

Evidence
Store

 a. AT checks whether A-PPLE logs all the creation
 deletion of the PII
 b. AT checks whether:
 - AAS created an Evidence Record
 - All the A-PPLE logs appear in the Record
 c. AT checks whether:
 - IMT received a notification from AAS (and on time)
 - IMT's Notification matches the Evidence Record

AT

A-PPLE

IMT

AAS

TL

6. Get AAS Evidences

2. Get APPLE Logs

1. Store/Get Logs
3. Get APPLE Logs

5. Evidence
Record

7. Notification

8. Get the
Notification

4. Get snapshot
information

OpenStack

a

b

c

Tool Step
AT Crawler

AT Assertion

Figure 4.8: AT checking assertions related to data retention

FP7-ICT-2011-8-317550-A4CLOUD Page 75 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 4.2: Java representation of the Data Retention validation scenario

1 public class DataRetentionVS {
2

3 // I. Declare your tools

4 AASTool aas = new AASTool ();

5 AppleTool apple = new AppleTool ();

6 IMTTool imt = new IMTTool ();

7 OpenStackTool openstack = new OpenStackTool ();

8

9 // II. Setup Phase

10 public void setUp ()

11 {
12 RestModule.initializeInfrastructure ();

13 }
14

15 // III. Validation Case

16 public void scenario () {
17

18 // a. Create Data Retention Audit Task

19 aas.createDataRetentionAuditTask ();

20

21 // b. Configure related policy

22 apple.createPII("policies/panosCountryPii2Min.xml");

23

24 // c. Create OpenStack SnapShot

25 openstack.createSnapshot ();

26

27 // d. Assert!

28 ACCOUNT.retentionViolation ();

29 }
30

31 public void finalize () {
32 // IV. Cleaning Case - Delete SnaphShot

33 RestModule.opensDeleteSnapshot(snapshotName));

34 }
35 }

FP7-ICT-2011-8-317550-A4CLOUD Page 76 of 94

D:D-6.2: Accountability Toolset Validation Report

EvidenceRecord that contains all the events logged by A-PPLE, and IMT received a notification,
on time, which is consistent with the AAS EvidenceRecord .

Listing 4.2 shows the Java representation of the Data Retention validation scenario. The
tool declaration phases, initialization of the AT and the validation scenario are defined in a way
analogous to the intrusion detection scenario. The assertion retentionViolation in particular
is automatically broken down into assertions for the involved tools. The scenario shows the use
of a method finalize() for cleaning up tasks.

Using this scenario we have successfully validated the properties P1–P3 using the Assertion
Tool.

4.2.3 Data transfer across data centers validation scenario

General description

In order to generate alerts of potential violations, a logging and evidence storage is maintained
by the DataSpacer. The accountability policy may specify that data collected and processed by
Kardio-Mon, for instance, should be only maintained in the servers residing in the EU territory.
Considering the fact of a human error or an administration process, the related storage volume
may be detached from the EU servers and attached to another server cluster in US. This is
a data transfer action that comprises an exception to the policy and should be raised. In this
respect, DTMT should log this transfer action on its TL instance in DataSpacer and inform the
A-PPLE instance of Kardio-Mon. This scenario validation scenario involves the A4Cloud tools:
AAS, DTMT, IMT and TL. It covers several accountability properties, in particular:

P1 A transparency property: “Cross-border data transfers are made explicit.”

P2 A responsiveness property: “Data transfer violations are notified in a timely manner.”

P3 A responsibility property: “The responsible entity for data transfer violations is made ex-
plicit and information about the source is made available.”

Given that timely notifications are important part of this validation scenario, the metric for Aver-
age Timing of Notification (Metric 40), see the Intrusion Detection validation scenario, can be
reused here.

This validation scenario consists of the following steps:

1. Start the DTMT check Audit Task (DataTrackAuditTask) using the setAuditTask REST call.
DTMT will check agent to periodically pull for new messages inside the DTMT’s TL in-
stance.

2. Manually, the OpenStack admin moves a VM to a forbidden location. DTMT recognizes
this event and logs the operation with a flag into its TL instance. DTMT also notifies IMT
about the violation.

3. When AAS recognizes a location violation, it transforms the violation into an EvidenceRe-
cord which is then stored inside the Evidence Store.

Using this validation scenario we can assert the following:

T1 Check whether AAS created an EvidenceRecord related to the location violation

FP7-ICT-2011-8-317550-A4CLOUD Page 77 of 94

D:D-6.2: Accountability Toolset Validation Report

T2 Verify that the EvidenceRecord created by AAS corresponds to the log event written by
DTMT, and that the timestamps are in close proximity (e.g., violation detected time, viola-
tion generated time, violation reported time)

T3 Check whether IMT received a notification from DTMT

T4 Verify that IMT received the notification from DTMT on time.

T5 Verify that the notification received by IMT matches the log event written by DTMT.

These assertions entail the accountability properties P1–P3 given above: P1 follows from
T1–T3, P2 from T4 and P3 from T1, T3 and T5.

Evidence
Store

 1. AT starts Data Track Audit Task
 2. AT runs a script to move VM location over OpenStack
 3. DTMT gets VMs location information
 4. Once DTMT detects a violation, it logs related data to TL
 5. DTMT then notifies IMT about the data transfer violation
 6. AAS fetches all the DTMT logs from TL
 7. AAS creates an Evidence Record.
 8-10. AT fetches the logs, notification, and Evidence Record

 a. AT checks whether DTMT detected the violation and
 logged the related data.
 b. AT checks whether:
 - IMT received a notification from AAS (and on time)
 - IMT's Notification matches the DTMT logs
 c. AT checks whether:
 - AAS created an Evidence Record
 - Evidence Record matches DTMT logs

AT

AAS

IMT

DTMT

TL

1. Create Audit
Task

4. Log Data

6. Fetch Logs

7. Evidence
Record

5. Notification

2. Move
VM

3. Location
information

OpenStack

a

b

c

8. Get DTMT
Logs

9. Get the
Notification

10. Get the
Evidence Record

Tool Step
AT Action
AT Crawler
AT Assertion

Figure 4.9: AT driving data transfer across data centers validation scenario

Figure 4.9 shows the interactions between AT and the other tools to execute this validation
scenario. The blue links reflect the actions AT takes to drive the other tools, while the black ones
reflect internal interactions between the A4Cloud tools (other than AT). The Figure also shows
the information AT receives from the A4cloud tools (red links), and the assertions that AT checks
(red bullets).

Listing 4.3 shows the Java representation of the Data Transfer across data centers validation
scenario. The tool declaration phases, initialization of the AT and the validation scenario are de-
fined in a way analogous to the previous scenarios. However, the method moveStorageVolume

may be implemented using a suitable script, or could receive some confirming data from Open-
Stack after the required action is performed manually through the OpenStack’s dashboard.

FP7-ICT-2011-8-317550-A4CLOUD Page 78 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 4.3: Java representation of the data transfer across data centers scenario

1 public class DataTransferDataCenterVS {
2 // I. Declare your tools

3 AASTool aas = new AASTool ();

4 DTMTTool dtmt = new DTMTTool ();

5 IMTTool imt = new IMTTool ();

6 OpenStackTool openstack = new OpenStackTool ();

7

8 // II. Setup Phase

9 public void setUp ()

10 { RestModule.initializeInfrastructure (); }
11

12 // III. Validation Scenario

13 public void scenario () {
14 // a. Initialize the system

15 aas.createDataTrackAuditTask ();

16

17 // b. Moves a VM to a forbidden location

18 openstack.moveStorageVolume ();

19

20 // c. Assert!

21 ACCOUNT.dataTransferCenters ();

22 }
23 }

4.2.4 Data transfer across hosts

For this validation scenario, DTMT has to be configured with a policy forbidding data transfer
between hosts; DTMT should also be connected to an A-PPLE instance holding personal data.
The migration of virtual disks and/or virtual machines to other hosts, a policy violation, is then
performed by an OpenStack data transfer operation, either manually on the OpenStack dash-
board or by AT running a certain script. Following the violation, DTMT will automatically trigger a
policy violation event in the configured A-PPLE instance. A-PPLE will then transfer the incident
information to IMT using a specialized client API.

This validation scenario can be seen as a special case of the previous one, and be used to
validate analogous accountability properties:

P1 A transparency property: “Cross-machine data transfers are made explicit.”

P2 A responsiveness property: “Data transfer violations are notified in a timely manner.”

P3 A responsibility property: “The responsible entity for data transfer violations is made ex-
plicit and information about the source is made available.”

Similar to the previous validation scenario, the metric for Average Timing of Notification (Met-
ric 40) can be reused here.

Using this validation scenario, we can assert the following:

T1 Check whether IMT received a notification from A-PPLE

FP7-ICT-2011-8-317550-A4CLOUD Page 79 of 94

D:D-6.2: Accountability Toolset Validation Report

T2 Verify that IMT received the notification from A-PPLE on time.

T3 Verify that the notification received by IMT matches the information in DTMT

These assertions entail the accountability properties P1–P3 given above: P1 follows from
T1, T3; P2 from T2 and T3, and P3 from T1 and T3.

 1. AT configure policy at A-PPLE
 2. AT runs a script to move a host location over OpenStack
 3. DTMT gets hosts information
 4. DTMT detects a violation, and sends the event to A-PPLE
 5. A-PPLE notifies IMT about the violation
 6. AT fetches DTMT data
 7. AT fetches IMT notification

 a. AT checks whether:
 - IMT received a notification
 - IMT's Notification matches the DTMT data

AT

IMT

DTMT

A-PPLE

1. Create
Policy

4. Policy Violation
Event

5. Notification

2. Move
Host3. Hosts

Information

OpenStack

a
6. Get DTMT

Data

7. Get the
Notification

Tool Step
AT Action
AT crawler
AT Assertion

Figure 4.10: AT driving data transfer across hosts validation scenario

Figure 4.10 shows the tools interactions involved in this scenario (black links), information
AT receives from the A4cloud tools (red links), and the assertions that AT checks (red bullets).

Listing 4.4 shows the Java representation of the Data transfer across hosts validation sce-
nario. Similar to the previous scenario moveDiskToHost can be implemented by AT running a
script that performs the host movement location on the OpenStack configuration or just receiving
information confirming that step.

4.2.5 End user notification

In the wearable scenario, there are two companies that can handle incidents: DataSpacer, at
the IaaS level, and Kardio-Mon, at the SaaS level. However, the Wearable Co would not neces-
sarily receive the needed information from Kardio-Mon, nor Kardio-Mon from DataSpacer, etc.
Furthermore, complicated Cloud provider chains with multiple participants increase the need for
more automated sharing of incident information – potentially allowing for some response actions
to be automated. IMT receives the detected incidents from DTMT and AAS, and uses A-PPLE
to notify end users about incidents that are relevant for them. When a notification of end users
occurs, IMT sends a notification to A-PPLE, A-PPLE provides this information to TL that informs
the end user about the incident. Depending on the placement of IMT instances on different

FP7-ICT-2011-8-317550-A4CLOUD Page 80 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing 4.4: Java representation of the transfer across hosts scenario

1 public class DataTransferHostVS {
2 // I. Declare your tools

3 AppleTool apple = new AppleTool ();

4 DTMTTool dtmt = new DTMTTool ();

5 IMTTool imt = new IMTTool ();

6 OpenStackTool openstack = new OpenStackTool ();

7

8 // II. Setup Phase

9 public void setUp ()

10 { RestModule.initializeInfrastructure (); }
11

12 // III. Validation Scenario

13 public void scenario () {
14 // a. Configure policy

15 apple.createPII("policies/locationPolicy.xml");

16

17 // b. Trigger policy violation

18 openstack.moveDiskToHost ();

19

20 // c. Assert!

21 ACCOUNT.dataTransferHosts ();

22 }
23 }

machines and their interconnection with the other A4Cloud tools, notifications can also be sent
between different IMT instances.

The goal of this validation scenario is to validate that the end user notifications are correctly
provided and therefore validate the following accountability properties:

P1 A transparency property: “Affected stakeholders are informed about failures, disclosures
or breaches.”

P2 A responsiveness property: “Stakeholders are notified in a timely manner.”

P3 A responsibility property: “The responsible entity for notifications is made explicit and their
source is made available.”

Since this validation scenario is mainly centered around the notification of end-users, it could
be interesting to assess the quality of notifications. The following metrics Coverage of incident
notifications (Metric 31) and Type of incident notification (Metric 32) of the Catalog of Account-
ability Metrics can be used for this purpose.

Metric 31 provides the percentage of privacy incidents and breaches for which affected
stakeholders were notified, for a given period of time.

• Input: This metric is computed using the following parameters:

– N – Number of privacy incidents for which notification exists

FP7-ICT-2011-8-317550-A4CLOUD Page 81 of 94

D:D-6.2: Accountability Toolset Validation Report

– T – Total number of privacy incidents over a given period

• Formulation and output: Output = (N/T) · 100

Metric 32 describes the quality of the notification procedures after a privacy incident or
breach.

• Formulation and output: Four levels are defined:

– Level 0 – No notification of privacy incidents is done, or it is done inconsistently.

– Level 1 – General notification, usually as a public notice. Affected users may not be
aware of the incident

– Level 2 – Individual notification to each affected user.

– Level 3 – Automated and self-service procedures for data subject access are in
place, including the case of denied access.

Note that the data for evaluating Metric 32 may not be collected automatically, but rather
manually by an evaluator (e.g., auditor). Additionally, as in other validation scenarios, the metric
for Average Timing of Notification (Metric 40) can be used here as well.

This validation scenario requires to create a new incident (or use an already existing one)
either using the GUI of IMT or by a REST call to IMT’s API. The sender of the incident should
be configured as a provider in IMT prior to the sending, otherwise the incident is not accepted.
Then, IMT, initiated by an incident handler, sends user notifications to A-PPLE, possibly indirectly
via other IMT instances. In turn A-PPLE will execute the corresponding actions associated in
all obligations associated to the user and to the policy violation. That is, A-PPLE notifies sub-
scribers and end user (e.g., about the affected resources, users and a humanly understandable
message). A-PPLE also logs all related events to the user TL sender instance and to the AAS
instance.

Using this validation scenario, we can assert the following:

T1 Check whether subscribers (to the involved IMTs) received the notification

T2 Check whether subscribers (to the involved IMTs) received the notification in a timely
fashion

T3 Check whether users received the notification

T4 Verify that A-PPLE logged all related events to the user TL sender instance.

T5 Verify that the events from A-PPLE matches the information in IMT.

T6 Verify that the notification received by the users matches the information in IMT.

These tool-specific validations allow the accountability properties P1–P3 from the beginning
to be validated: P1 follows from T1, T3-T6, P2 follows from T2, and P3 follows from T4–T6.

Similar to the previous scenarios, Figure 4.11 shows the tools interactions, information gath-
ering, and assertions involved in this scenario. Listing 4.5 shows the Java representation of the
End user notification validation scenario.

FP7-ICT-2011-8-317550-A4CLOUD Page 82 of 94

D:D-6.2: Accountability Toolset Validation Report

 1. AT inserts an incident at IMT
 2. IMT sends user notification to A-PPLE
 3. A-PPLE logs related events to TL
 4. A-PPLE notifies the user
 5. AT fetches IMT data
 6. AT gets A-PPLE logs from TL
 7. AT gets the notification received by the user

 a. AT checks whether:
 - A-PPLE logged all related events
 - the events matches the information in IMT
 b. AT checks whether:
 - the user received the notification on time
 - the notification matches the information in IMT

AT

A-PPLE

IMT

1. Create
Incident

2. Send User
Notification Data

3. Log
Events

a

6. Gets
A-PPLE

Logs

Tool Step
AT Action
AT Crawler

AT Assertion

TLUser

4.Notification

5. Get
IMT Data

7. Get
Notification

b

Figure 4.11: AT driving end user notification validation scenario – one IMT instance

Listing 4.5: Java representation of the end user notification validation scenario

1 public class EndUserNotificationVS {
2 // I. Declare your tools

3 IMTTool imt = new IMTTool ();

4 AppleTool apple = new AppleTool ();

5

6 // II. Setup Phase

7 public void setUp ()

8 { RestModule.initializeInfrastructure (); }
9

10 // III. Validation Scenario

11 public void scenario () {
12 // a. Create an incident

13 imt.createIncident("incidents/incident.json");

14

15 // b. Assert!

16 ACCOUNT.incidentNotification (); }
17 }

FP7-ICT-2011-8-317550-A4CLOUD Page 83 of 94

D:D-6.2: Accountability Toolset Validation Report

4.3 Summary

In this chapter, we have provided an overview of cloud service supply chain and the wear-
able scenario that has been implemented and deployed in order to demonstrate the different
functionalities of the A4Cloud accountability framework. We have then presented the validation
scenarios considered for validation in D-6, and which are directly derived from the wearable sce-
nario. We have then reported on the accountability validation of the A4Cloud policy-enforcement
tools by executing the validation scenarios using the Assertion Tool.

FP7-ICT-2011-8-317550-A4CLOUD Page 84 of 94

Chapter 5

Conclusion

In this deliverable we introduced our methodology for validating the A4Cloud toolkit and a frame-
work supporting this methodology. Our methodology is based on validation scenarios that in-
volve particular interactions between the A4Cloud tools. The toolkit’s functionalities are validated
with respect to a set of accountability properties that have to be respected by compositions of
the the different A4Cloud tools.

In Chapter 2, we first provided a review of existing academic approaches and tools for ver-
ifying accountability in the Cloud. This review showed that none of these approaches provided
the validation functionality that our tools support and that the generality of our tools in terms of
the covered accountability properties is unmatched. After a brief discussion how metrics are
used as part of the validation methodology, we motivated and defined a set of accountability
assertions that allows the declarative definition of accountability properties. The accountability
properties can be combined to construct higher-level properties.

In Chapter 3, we defined an assertion framework implementing our validation methodology
and offering the means to automate the execution of validation scenario. We introduced the
architecture of the two validation tools. First, the Assertion Tool (AT), its core components or-
chestrating the functionalities of our framework, its features and implementation, as well as the
different APIs provided by the framework. We have shown, in particular, how the Assertion tool
can be extended to accommodate new tools, in particular, accountability-related tools external
to the A4Cloud project. Second, we also presented the monitoring tool AccMon, which provide
the means to monitor accountability policies in the context of a real system, and we discussed
the potential integration between the AT and AccMon in order to take the advantages of the
different functionalities provided by the two tools. Finally, we presented a brief overview of the
A4Cloud tools that we have subjected to validation, their interactions, and the format of the data
flows, notably those

In Chapter 4, we presented the wearable scenario and the setup of a Cloud service provider
chain. Then we defined a set of validation scenarios, which are related to the global wear-
able scenario, and show how AT can drive A4Cloud tools in order to execute these validation
scenarios and validate the related assertions.

The results of the validation workpackage pave the way to multiple extensions as well on
the methodological level as well as the tool level. These include the extension of the set of
low-level accountability predicates, for example in order to integrate new external accountability
tools in the framework. In the long run, the development of a more direct representation of high-

FP7-ICT-2011-8-317550-A4CLOUD Page 85 of 94

D:D-6.2: Accountability Toolset Validation Report

level accountability properties constitutes a worthwhile endeavor. On the tool level, a tighter
integration of the Assertion and AccMon tools is useful. A first step to this end, is the reuse
of the accountability predicate library by AccMon. In the long run, the runtime exchange of
information between both tools is an important goal.

FP7-ICT-2011-8-317550-A4CLOUD Page 86 of 94

Appendix A

Examples of Evidence Records and
Notifications

In this appendix, we provide examples for the data formats of some of the interactions between
A4Cloud tools, which are discussed in Section 3.4.3.

Listing A.1 shows a snapshot of a violation occurred at machine named ’Main-Container’,
and collected by an agent named DataRetentionPolicyEvaluationAgent.

Listing A.1: A snapshot of a violation occurred at machine “Main-Container”

1 <evidenceContainer> <record id="1">

2 <action>SnapshotExists(1)_6b0a9a97-0ca7-4fa1-9d68-0714fe3b03c2

3 (Kardio-Mon-PII-Store)@Main-Container(10.0.0.6)</action>

4 <actor>PiiSnapshotCheckAgent_1042_Main-Container@AAS_Core_Container

5 </actor>

6 <policyID>1042</policyID>

7 <supportingElements elementID="0">

8 <signature>uAE5vrQsJJIj2anVKxtj4fmoKmeeovxBdYF5879eql8=</signature>

9 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">NovaImage{ ... }

</element> </supportingElements>

10 <supportingElements elementID="1">

11 <signature>M29rUHtjhAjzWdmn/9kw+gUxbxTysHkMDVCdPJC7akU=</signature>

12 <element xsi:type="xs:string" xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">Record UUID:

d32315e9-9328-4ee1-9d5e-9f223d06261d

13 </element> </supportingElements>

14 <evidenceMetaData>

15 <collectingInstance>PiiSnapshotCheckAgent_1042_Main-Container

16 </collectingInstance> </evidenceMetaData>

17 </record> </evidenceContainer>

FP7-ICT-2011-8-317550-A4CLOUD Page 87 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing A.2: A notification sent by IMT to cloud customer

1 { "id":"119 ae094 -7c33 -4070 -92c7 -716437 b37a31",

2 "type":{ "id":"2bee3378 -a034 -4bef -a080 -d23b10579972",

3 "name":"Reduced availability",

4 "endpoint":"https://test.com/api /1.0/ receive",

5 "incidents":[{ "id":"36ece42d -aa4f -41cf -a12d -27 c9295f5a64",

6 "name":"Serious DDoS",

7 "type":{ "id":"e5f022a6 -8372 -464c-9c2a -71 dd031c6d08",

8 "name":"DDoS",

9 "description":"A large number of connections with the goal of

making the page unavailable", "consequence":0.8 },
10 "triggers":[{ "id":"a6dadd88 -ebb5 -454b-9b12 -9 d94f6dd3e4d",

11 "type":{ "id":"72597fca -8032 -4793 -b5f2 -cbd0abd87f4c",

12 "name":"Ping time",

13 "description":"The time it takes a package to round trip

between the service in question and the measuring instance.

Threshold is measured in milliseconds", "comparators":[

">", "<"] }, "method":"NONE", "threshold":14, "comparator"

: ">"

14 }]}] },
15 "generation_time":"2015 -05 -06 14:01:46Z",

16 "sent_time":"2015 -05 -06 14:01:55Z",

17 "sender":"434 c693d -dff6 -446c-923e-7 a1c738d3d50",

18 "hmac":"HMAC",

19 "incidents":[{ ... }]
20 }

Listing A.2 shows a notification sent by IMT to cloud customer subscribes about incident
types. The data format used is similar to the one used for the notification by AAS to IMT.

Listing A.3 shows an example of notification from AAS to IMT about a Data Retention policy
violation. This message contains the generated evidence record which describes the occurred
incident. The custom fields contain the actual evidence - e.g., the PII store and delete mes-
sages as well as proof of an existing snapshot which includes the data already deleted by
A-PPLE.

FP7-ICT-2011-8-317550-A4CLOUD Page 88 of 94

D:D-6.2: Accountability Toolset Validation Report

Listing A.3: A notification from AAS to IMT

1 { "id" : "4fae8932 -bc84 -46c5 -b371 -9 a25af975e64",

2 "type" : { "id" : "73c2af7b -31b4 -44a0 -b2cd -3 f2551715600",

3 "name" : "PII snapshot exists notification",

4 "endpoint" : "http://10.0.0.8:8800",

5 "incidents" : [{ "id" : "697 a57c0 -827e-40dd -a4fa -68 dae13b44b4",

6 "name" : "PII Data Retention Violation",

7 "type" : { "id" : "9e8b2d47 -1c14 -402b-9236 - cb88d57f4180",

8 "name" : "PII Data Retention Snapshot Violation",

9 "description" : "PII should be completely deleted but still

exists in snapshot", "consequence" : 0.5 },
10 "triggers" : [{ "id" : "668 c53b4 -3a9c -4364 -8a43 -654 e37f5b396",

11 "threshold" : "1", "comparator" : "?", "method" : "None",

12 "type" : { "id" : "a68455f0 -3357 -4df8 -b27e -ff3a4af0792a",

13 "name" : "PII snapshot exists",

14 "description" : "PII should be completely deleted but still

exists in snapshot", "comparators" : ["?"] } }] }] },
15 "generation_time" : "2016 -02 -22 10:27:00.813",

16 "sent_time" : "2016 -02 -22 10:27:00.821",

17 "sender" : "60c36dd3 -2df6 -4c60 -b083 -1 b94878af90b", "hmac" : "hmac",

18 "incidents" : [{ "id" : "dd73e2f9 -6e62 -4676 -aac8 -07442 f82ff06",

19 "parent" : { "id" : "da2d909d -6704 -4344 -83e6 -828 bc0d04059",

20 "provider" : "DataRetentionPolicyEvaluationAgent_1042_Main -Container",

"endpoint" : "141.28.98.114" },
21 "type" : { "id" : "2186237b-5cb6 -4618 -8fee -381 f0cd658f7",

22 "name" : "PII Data Retention Snapshot Violation",

23 "description" : "PII should be completely deleted but still exists in

snapshot", "consequence" : 0.5 },
24 "liaison" : { "id" : "03725dbd -1ef7 -42ad -8a74 -724 e31851518",

25 "name" : "AAS", "email" : "aas@hfu.de", "phone" : "555 5555555",

26 "address" : "Robert -Gerwig -Platz 1", "zip" : "79117", "city" : "

Furtwangen"},
27 "language" : "en_US", "status" : "Unresolved", "impact" : 0.6,

28 "summary" : "A website can be accessed using unencrypted communication

(http)",

29 "description" : "The existence of this PII snapshot violates the data

retention policy (ID: 1042)",

30 "detection_time" : "2016 -02 -22 10:27:00.625",

31 "occurrence_time" : "2016 -02 -22 10:27:00.625", "attachments" : [],

32 "custom_fields" : [{ "id" : "28811f6b -da1b -4054 -b2aa -f7eef0539173",

33 "value" : "<?xml version ="1.0" encoding ="UTF -8" standalone ="yes"?>

34 <evidenceContainer > ... </evidenceContainer >",

35 "type" : { ... } },
36 ... }] }

FP7-ICT-2011-8-317550-A4CLOUD Page 89 of 94

Bibliography

[BB13a] Reza Babaee and Seyed Morteza Babamir. Runtime verification of service-
oriented systems: a well-rounded survey. International Journal of Web and
Grid Services, 9(3):213–267, 2013. PMID: 55699.

[BB13b] Reza Babaee and Seyed Morteza Babamir. Runtime verification of service-
oriented systems: A well-rounded survey. Int. J. Web Grid Serv., 9(3):213–267,
August 2013.

[BGRS15] Walid Benghabrit, Hervé Grall, Jean-Claude Royer, and Mohamed SELLAMI.
Abstract Accountability Language: Translation, Compliance and Application.
In ASIA-PACIFIC SOFTWARE ENGINEERING CONFERENCE, ASIA-PACIFIC
SOFTWARE ENGINEERING CONFERENCE, New Delhi, India, December
2015.

[BKV15] Andreas Bauer, Jan-Christoph Kster, and Gil Vegliach. The ins and outs of first-
order runtime verification. Formal Methods in System Design, 46(3):286–316,
2015.

[BLS11] Andreas Bauer, Martin Leucker, and Christian Schallhart. Runtime verification
for ltl and tltl. ACM Trans. Softw. Eng. Methodol., 20(4):14:1–14:64, September
2011.

[BM14] Denis Butin and Daniel Métayer. FM 2014: Formal Methods: 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, chapter Log Analy-
sis for Data Protection Accountability, pages 163–178. Springer International
Publishing, Cham, 2014.

[CEH+05] R. Corin, S. Etalle, J. Hartog, G. Lenzini, and I. Staicu. Formal Aspects in
Security and Trust: IFIP TC1 WG1.7 Workshop on Formal Aspects in Security
and Trust (FAST), World Computer Congress, August 22–27, 2004, Toulouse,
France, chapter A Logic for Auditing Accountability in Decentralized Systems,
pages 187–201. Springer US, Boston, MA, 2005.

[DFK06] Anatoli Degtyarev, Michael Fisher, and Boris Konev. Monodic temporal resolu-
tion. ACM Transactions on Computational Logic, 7(1):108–150, January 2006.

[dOSoTP+15a] Anderson Santana de Oliveira, Jakub Sendor, Võ Thành Phúc, Efthymios Vla-
chos, Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Walid Benghabrit, Jean-
Claude Royer, Michela D’Errico, and Martin Gilje Jaatun. D:D-3.2:Prototype

FP7-ICT-2011-8-317550-A4CLOUD Page 90 of 94

D:D-6.2: Accountability Toolset Validation Report

for accountability enforcement tools and services. Technical Report D:C-4.2,
Accountability for Cloud and Future Internet Services - A4Cloud Project, 2015.

[dOSoTP+15b] Anderson Santana de Oliveira, Jakub Sendor, Võ Thành Phúc, Efthymios Vla-
chos, Monir Azraoui, Kaoutar Elkhiyaoui, Melek Önen, Walid Benghabrit, Jean-
Claude Royer, Michela D’Errico, Martin Gilje Jaatun, and Inger Anne Tøndel.
D:D-3.2 Prototype for accountability enforcement tools and services. Tech-
nical Report D:D-2.3, Accountability for Cloud and Future Internet Services -
A4Cloud Project, 2015.

[dOSP+15] Anderson Santana de Oliveira, Jakub Sendor, Võ Thành Phı́c, Stefan Berthold,
Siani Pearson, Massimo Felici, Erdal Cayirci, Efthymios Vlachos, Monir
Azraoui, Kaoutar Elkhiyaoui, Antorweep Chakravorty, Tomasz Wiktor Wlodar-
czyk, Melek Önen, Walid Benghabrit, Jean-Claude Royer, Michela D’Errico,
Martin Gilje Jaatun, and Inger Anne Tondel. D:C-3.2: Prototype for accountabil-
ity enforcement tools and services. Technical Report D:C-3.2, Accountability for
Cloud and Future Internet Services - A4Cloud Project, 2015.

[EM11] Daniel Le Métayer Eduardo Mazza, Marie-Laure Potet. A formal framework for
specifying and analyzing logs as electronic evidence. Formal Methods: Foun-
dations and Applications, 6527:194–209, 2011.

[Fid88] C. J. Fidge. Timestamps in message-passing systems that preserve the partial
ordering. Proceedings of the 11th Australian Computer Science Conference,
10(1):5666, 1988.

[FP+14] Massimo Felici, Siani Pearson, et al. Conceptual framework. Technical Report
D:C-2.1, A4Cloud, September 2014.

[GBT11] Jerry Gao, Xiaoying Bai, and Wei-Tek Tsai. Cloud testing-issues, challenges,
needs and practice. Software Engineering: An International Journal, 1(1):9–23,
2011.

[GI09] N. Gruschka and L. L. Iacono. Vulnerable cloud: Soap message security vali-
dation revisited. In Web Services, 2009. ICWS 2009. IEEE International Con-
ference on, pages 625–631, July 2009.

[GKP+15a] Frederic Gittler, Theo Koulouris, Siani Pearson, Rehab Alnemr, Jean-Claude
Royer, Michela D Errico, Anderson Santana De Oliveira, Thomas Rubsamen,
Philipp Ruf, Christoph Reich, Mehdi Haddad, Tobias Pulls, Carmen Gago,
Christian Froystad, and Lorenzo Dalla Corte. Annex to d:d-2.ab: The a4cloud
toolkit. Technical report, The A4Cloud project, October 2015.

[GKP+15b] Frederic Gittler, Theo Koulouris, Siani Pearson, Vasilis Tountopoulos, Mehdi
Haddad, Melek Önen, Richard Mark Brown, Jesus Luna, Alain Pannetrat, Jean-
Claude Royer, Mohamed Sellami, Monir Azraoui, Kaoutar Elkhiyaoui, Niamh
Gleeson, Asma Vranaki, Anderson Santana De Oliveira, Karin Bernsmed, Car-
men Gago, and David Núñez. D:D-2.3: Initial reference architecture. Tech-
nical Report D:D-2.3, Accountability for Cloud and Future Internet Services -
A4Cloud Project, 2015.

FP7-ICT-2011-8-317550-A4CLOUD Page 91 of 94

D:D-6.2: Accountability Toolset Validation Report

[GMM06] Alexandre Genon, Thierry Massart, and Cédric Meuter. Monitoring distributed
controllers: When an efficient ltl algorithm on sequences is needed to model-
check traces. In Proceedings of the 14th International Conference on Formal
Methods, FM’06, pages 557–572, Berlin, Heidelberg, 2006. Springer-Verlag.

[GP10] Alwyn Goodloe and Lee Pike. Monitoring distributed real-time systems: A sur-
vey and future directions, 2010.

[HARD10] Andreas Haeberlen, Paarijaat Aditya, Rodrigo Rodrigues, and Peter Druschel.
Accountable virtual machines. In Remzi H. Arpaci-Dusseau and Brad Chen,
editors, 9th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2010, October 4-6, 2010, Vancouver, BC, Canada, Proceedings,
pages 119–134. USENIX Association, 2010.

[HyT] HyTrust. http://www.hytrust.com/.

[IEE90] Ieee standard glossary of software engineering terminology. IEEE Std 610.12-
1990, pages 1–84, Dec 1990.

[KTV10] Ralf Küsters, Tomasz Truderung, and Andreas Vogt. Accountability: definition
and relationship to verifiability. In Ehab Al-Shaer, Angelos D. Keromytis, and Vi-
taly Shmatikov, editors, Proceedings of the 17th ACM Conference on Computer
and Communications Security, CCS 2010, Chicago, Illinois, USA, October 4-8,
2010, pages 526–535. ACM, 2010.

[LHKR08] Feifei Li, Marios Hadjieleftheriou, George Kollios, and Leonid Reyzin. Authen-
ticated index structures for outsourced databases. In Michael Gertz and Sushil
Jajodia, editors, Handbook of Database Security - Applications and Trends,
pages 115–136. Springer, 2008.

[Mat89] Friedemann Mattern. Virtual time and global states of distributed systems. In
M. Cosnard et. al., editor, Parallel and Distributed Algorithms: proceedings of
the International Workshop on Parallel & Distributed Algorithms, pages 215–
226. Elsevier Science Publishers B. V., 1989.

[MLK14] Fatma Masmoudi, Monia Loulou, and Ahmed Hadj Kacem. Multi-tenant ser-
vices monitoring for accountability in cloud computing. In IEEE 6th International
Conference on Cloud Computing Technology and Science, CloudCom 2014,
Singapore, December 15-18, 2014, pages 620–625. IEEE Computer Society,
2014.

[MNP+11] Philippe Massonet, Syed Naqvi, Christophe Ponsard, Joseph Latanicki, Benny
Rochwerger, and Massimo Villari. A monitoring and audit logging architecture
for data location compliance in federated cloud infrastructures. In IPDPS Work-
shops, pages 1510–1517. IEEE, 2011.

[MSLK15] Fatma Masmoudi, Mohamed Sellami, Monia Loulou, and Ahmed Hadj Kacem.
Analyzing multi-tenant cloud services’ accountability. In Yinsheng Li, Xiang Fei,
Kuo-Ming Chao, and Jen-Yao Chung, editors, 12th IEEE International Confer-
ence on e-Business Engineering, ICEBE 2015, Beijing, China, October 23-25,
2015, pages 239–244. IEEE Computer Society, 2015.

FP7-ICT-2011-8-317550-A4CLOUD Page 92 of 94

http://www.hytrust.com/

D:D-6.2: Accountability Toolset Validation Report

[NFGA+14] David Núñez, Carmen Fernandez-Gago, Isaac Agudo, Jesus Luna, and Alain
Pannetrat. Validation of the accountability metrics. Technical Report D35.2,
Accountability for Cloud and Future Internet Services - A4Cloud Project, 2014.

[NSG+15] Athanasios Naskos, Emmanouela Stachtiari, Anastasios Gounaris, Panagio-
tis Katsaros, Dimitrios Tsoumakos, Ioannis Konstantinou, and Spyros Sioutas.
Dependable horizontal scaling based on probabilistic model checking. In 15th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
CCGrid 2015, Shenzhen, China, May 4-7, 2015, pages 31–40. IEEE Computer
Society, 2015.

[NSKG15] Athanasios Naskos, Emmanouela Stachtiari, Panagiotis Katsaros, and Anasta-
sios Gounaris. Probabilistic model checking at runtime for the provisioning of
cloud resources. In Ezio Bartocci and Rupak Majumdar, editors, Runtime Ver-
ification - 6th International Conference, RV 2015 Vienna, Austria, September
22-25, 2015. Proceedings, volume 9333 of Lecture Notes in Computer Science,
pages 275–280. Springer, 2015.

[PTC+12] S. Pearson, V. Tountopoulos, D. Catteddu, M. Sudholt, R. Molva, C. Reich,
S. Fischer-Hubner, C. Millard, V. Lotz, M.G. Jaatun, R. Leenes, Chunming
Rong, and J. Lopez. Accountability for cloud and other future internet ser-
vices. In Cloud Computing Technology and Science (CloudCom), 2012 IEEE
4th International Conference on, pages 629–632, 2012.

[SS14] T. Scheffel and M. Schmitz. Three-valued asynchronous distributed runtime
verification. In Formal Methods and Models for Codesign (MEMOCODE), 2014
Twelfth ACM/IEEE International Conference on, pages 52–61, Oct 2014.

[SSL12] Smitha Sundareswaran, Anna Cinzia Squicciarini, and Dan Lin. Ensuring dis-
tributed accountability for data sharing in the cloud. IEEE Trans. Dependable
Sec. Comput., 9(4):556–568, 2012.

[SVA+06] Koushik Sen, Abhay Vardhan, Gul Agha, , and Grigore Roşu. Decentral-
ized runtime analysis of multithreaded applications. In NSF Next Generation
Software Program Workshop (NSFNGS’06) (Satellite Workshop of IPDPS’06).
IEEE Digital Library, 2006. (To Appear).

[SVAR04] Koushik Sen, A. Vardhan, Gul Agha, and G. Rosu. Efficient decentralized mon-
itoring of safety in distributed systems. In Software Engineering, 2004. ICSE
2004. Proceedings. 26th International Conference on, pages 418–427, May
2004.

[Tes] Emulab Network Emulation Testbed. www.emulab.net.

[TNR11] Slim Trabelsi, Gregory Neven, and Dave Raggett. Report on design and imple-
mentation. Technical Report D5.3.4, Primelife Project, 2011.

[TRAR+15] Christoph Reich Thomas Ruebsamen, Monir Azraoui, Jean-Claude Royer,
Jenni Reuben, Tobias Pulls, Karin Bernsmed, and Massimo Felici. D:C-
8.2:Framework of Evidence. Technical Report D:C-8.2, Accountability for Cloud
and Future Internet Services - A4Cloud Project, 2015.

FP7-ICT-2011-8-317550-A4CLOUD Page 93 of 94

D:D-6.2: Accountability Toolset Validation Report

[WZ10] Chen Wang and Ying Zhou. A collaborative monitoring mechanism for making
a multitenant platform accountable. In Erich M. Nahum and Dongyan Xu, edi-
tors, 2nd USENIX Workshop on Hot Topics in Cloud Computing, HotCloud’10,
Boston, MA, USA, June 22, 2010. USENIX Association, 2010.

[YCW+10] Jinhui Yao, Shiping Chen, Chen Wang, David Levy, and John Zic. Accountability
as a service for the cloud. In 2010 IEEE International Conference on Services
Computing, SCC 2010, Miami, Florida, USA, July 5-10, 2010, pages 81–88.
IEEE Computer Society, 2010.

[YCW+12] Jinhui Yao, Shiping Chen, Chen Wang, David Levy, and John Zic. Accountability
services for verifying compliance in the cloud. IJCC, 1(2/3):240–260, 2012.

FP7-ICT-2011-8-317550-A4CLOUD Page 94 of 94

	Executive Summary
	List of Figures
	List of Tables
	Glossary
	Introduction
	Accountability Validation
	The validation methodology
	Related work
	Scientific approaches to accountability validation
	Accountability-aware tools
	Runtime verification

	Accountability assertions
	Motivation
	High-level accountability properties
	Accountability assertions
	Accountability predicates
	Expression of high-level properties in terms of low-level ones

	Summary

	The Assertion Framework
	Architecture of the assertion framework
	The Assertion Tool
	Features
	Architecture
	Implementation

	AccMon: Accountability Monitor
	Overview
	Architecture
	Implementation
	AccMon collaboration with the Assertion Tool
	Screenshots

	A4Cloud toolkit
	Tool set subjected for validation
	Overview of the A4Cloud toolkit interactions
	Data flows and data format
	High-Level description of the A4Cloud toolkit

	Summary

	Validation Scenarios and Demo
	Wearable scenario
	Validation scenarios
	Intrusion detection validation scenario
	Data retention validation scenario
	Data transfer across data centers validation scenario
	Data transfer across hosts
	End user notification

	Summary

	Conclusion
	Examples of Evidence Records and Notifications
	References

