CLOUD
ACCOUNTABILITY
PROJECT

D:D-3.1: Enforcement Tools, Service Specification
and Architectural Design

Deliverable Number: D43.1

Work Package: WP 43

Version: Final

Deliverable Lead Organisation: SAP
Dissemination level: PU

Contractual Date of Delivery (release): 30/11/2013
Date of Delivery: 20/12/2013

Jakub Sendor (SAP)

Anderson Santana de Oliveira (SAP), Alexander Garaga (SAP), Kateline Jenatton
(SAP), Jakub Sendor (SAP), Monir Azraoui (EURC), Kaoutar Elkhiyaoui (EURC),
Melek Onen (EURECOM), Walid Benghabrit (EMN), Jean-Claude Royer (EMN), Mo-
hamed Sellami (EMN), Nick Papanikolaou (HP Labs)

Leonardo Martucci (KAU), Tomasz Wiktor Wlodarczyk (UiS)

A4Cloud

www.adcloud.eu

Accountability For Cloud and Other Future Internet Ser-
vices

SEVENTH FRAMEWORK
FP7-ICT-2011-8-317550-A4CLOUD PRGN

Enforcement Tools, Service Specification and Architectural Design

Contents

Listof Figures
Executive Summary

1 Introduction to Policy Enforcement Framework
1.1 A General View of Policy Enforcement
1.2 Review of the Existing Enforcement Methodologies
1.3 Obligations Mapping

2 Extensions to the Existing Tools and Services
21 PPLENgine
2.1.1 Core Engine Components
2.1.2 Eventand Obligation Handlers
2.2 Interfaces Required for Integration L.
221 Securelogging
222 EvidenceCollection oL
223 Audit
2.3 Extended Policy Enforcement Engine Architecture

3 Data Transfer Control Toolkit: Architecture and Desigh for The New En-

forcement Tools

3.1 Motivation for Data Transfer Controlinthe Cloud
3.2 Introduction to Data Transfer Control Toolkit
3.3 Data Tracking ChallengesintheCloud
3.4 Data Tracking Monitors o
3.5 SaaSandPaaS Monitoring oo Lo
3.6 laaS Monitoring
3.7 Topology e
3.8 Accountability Service
39 AuditTrails e
3.10 Security Considerations oL

Conclusions

A Enforcement Methodologies Survey

FP7-1CT-2011-8-317550-A4CLOUD Page: 2 of 83

Enforcement Tools, Service Specification and Architectural Design

References 38

FP7-1CT-2011-8-317550-A4CLOUD Page: 3 of 83

Enforcement Tools, Service Specification and Architectural Design

List of figures

1.1 General Policy Framework introduced by WP C-4
1.2 Design Time for Accountability Policies
1.3 RunTime Enforcement
1.4 AcclLab Architecture oL

2.1 PPL Engine Architecture
2.2 Logging with Non-Repudiation
23 Audit ...
2.4 PPL Engine with the interfaces for the extension

3.1 Datatracking architecture
3.2 Data Tracking Monitor Architecture
3.3 Accountability service architecture

FP7-1CT-2011-8-317550-A4CLOUD

Page: 4 of 83

Enforcement Tools, Service Specification and Architectural Design

Executive Summary

Automatic policy enforcement requires provisioning of a toolkit allowing to model the
necessary policy statements and to guide the processes of ensuring compliance with
the policies. The A4Cloud policy enforcement and compliance toolkit needs to built
on top of a consistent policy specification and enforcement methodologies, considering
the already existing enforcement solutions in the cloud landscape, such that we can
maximize its adaptability to cloud environments, and thus facilitate its integration with
cloud services.

The A4Cloud policy framework, introduced by WP C-4 (“Policy mapping and rep-
resentation”) [GdOS™13] defined a policy model where regulatory, contractual, secu-
rity and privacy concerns can be expressed, with particular emphasis on constraints
about personal and business confidential usage. Accountability policies are enforce-
able across the cloud service provision chain by means of accountability services and
tools.

In this document, we will present the design of the accountability toolkit establishing
the feasibility of the tools supporting the methodologies identified in the policy frame-
work that is delivered by WP C-4:

e Chapter 1 introduces the A4Cloud policy framework that was defined in the WP
C-4 and describes AcclLab tool (which stands for Accountability Laboratory) that
provides support for writing abstract accountability obligations, checks their con-
sistency and compliance, and ultimately transforms them into A-PPL policies for
enforcing obligations via the A-PPL engine.

e Chapter 2 deals with the existing tools that support the enforcement mecha-
nisms envisioned in the policy framework. We present the PPL Engine, which
is the policy enforcement engine that was designed in the scope of the PrimeLife
project [Pri11]. We identified the extension points which will make it possible to
plug-in the necessary functionality introduced by the policy framework: robust
logging, auditing and evidence collection.

e Chapter 3 contains the design of the data transfer control tools for the cloud,
with the architecture blueprint and a working example in a selected A4Cloud use
case [BOS™13]. The approach automates the collection of evidence that obliga-
tions concerning personal data transfers are being carried out properly. The rules
determining the obligations can be obtained from the policies (enforceable by the
A-PPL Engine) and thanks to the configuration provided by the user are evaluated
together with the data transfer logs to check for any policy violation.

e Additionally we provide in Appendix A an early study conducting a survey of the
general enforcement methodologies that abstracts from the A4Cloud policy frame-
work. This was a preliminary work that established the policy enforcement princi-
ples (in terms of tooling) for this work package, before the WP C-4 will supply the
report on the policy enforcement techniques (which is planned to be delivered in
Month 24).

FP7-1CT-2011-8-317550-A4CLOUD Page: 5 of 83

Enforcement Tools, Service Specification and Architectural Design

As this report aims mainly at building the ground for the practical implementation
tasks scheduled to start in Month 16, the nature of this document is in most of the
parts a technical documentation of the tools that will constitute the policy enforce-
ment framework. We advise the readers interested in the detailed description of the
A4Cloud policy framework to refer to the deliverable on the policy representation frame-
work [GdOS™13].

FP7-1CT-2011-8-317550-A4CLOUD Page: 6 of 83

Chapter 1

Introduction to Policy Enforcement
Framework

In this chapter we first present in Section 1.1 a general view of the policy enforcement
tools, based on the A4Cloud policy framework introduced in [GdOS™13]. Later on in
Section 1.2 we discuss this initial view, drawing also the conclusions from our study
summarized in Appendix A. Section 1.3 closes this chapter with the architecture of the
Acclab, the tool that will be enforcing AAL (Abstract Accountability Language) obliga-
tions introduced by WP C-4.

1.1 A General View of Policy Enforcement

Accountability policies will be defined at first in a higher abstraction level, and then
translated into enforceable policies as depicted in Figure 1.1 [GdOS™13]. In order to
accomplish the translation from the abstract accountability policy language into concrete
policies, we introduce the AcclLab tool. This tool helps in writing abstract accountabil-
ity obligations, to check for consistency and compliance and then it generates A-PPL
policies for enforcing the obligations via the A-PPL engine. It enables the user to ex-
periment with accountability obligations and to evaluate their adequacy. The input is
provided via a smart wizard which helps in writing AAL obligations (for a privacy officer)
and user preferences (for a data subject).

The tool internally represents the obligations and computes A-PPL policies for the
enforcement of these obligations. It is also devoted to check consistency that is to find
some errors in the obligation description. The compliance check allows to establish if
one obligation is stronger than (takes the precedence over) another obligation.

The tool will have three modules, the first for visually declaring system resources
(agents, services, data, etc.), the second for the wizard with lists of choices to write
obligations, the third for an AAL code editor, and a toolkit with different action set, e.g.
to check consistency, compliance and to generate A-PPL (Figure 1.2).

The output will be consumed by the A-PPL engine, thus it should conform to the
A-PPL schema (see Figure 1.3). The main purpose of AccLab is however to facilitate

FP7-1CT-2011-8-317550-A4CLOUD Page: 7 of 83

Enforcement Tools, Service Specification and Architectural Design

(" AA4Cloud Policy Representation
Framework
Human Readable (1) | Human/Machine Readable
Accountability obligations o Representation (AAL)
)
|
A4
i’gg‘: _ (M_) | > Machine Understandable
Representation (A-PPL)

Figure 1.1: General Policy Framework introduced by WP C-4

O

I AAL obligations

Privacy Officer

AccLab

apping to Policies

+ A-PPL policies for
policy engine

Acclab is devoted to the writing of obligations
in a quite readable form and to check them,
then to generate policies to enforce these
obligations.

Figure 1.2: Design Time for Accountability Policies

the obligations writing process in a form that is readable, to check them, and to gen-
erate policies to enforce these obligations. In that sense, the tool can be seen as an
intermediary step in policy enforcement, taking accountability obligations as its input
and producing enforceable A-PPL policies that are stored in a Policy Repository, to be
used by the A-PPL Engine during the actual policy evaluation process.

FP7-1CT-2011-8-317550-A4CLOUD Page: 8 of 83

Enforcement Tools, Service Specification and Architectural Design

Policy Definition and Enforcement
Data Transfer Queries

Data
Configuration = Transfer —[Data Transfer Logs]— A-PPL Engine
Control Tool [

[{ Policy Repository]

7

AccLab

7
|

[Accountability Obligations]

Figure 1.3: Run Time Enforcement

1.2 Review of the Existing Enforcement Methodologies

From our survey of the existing tools summarized in Appendix A we can draw some con-
clusions. There are few existing frameworks covering a holistic view of accountability.
Often these are academic prototypes demonstrating the feasibility of some solutions.
The descriptions are generally limited to few academic papers and no existing tool sup-
port can be reused. There are some possible tools for secure logging and auditing for
instance, but still we need to interface with them. In our survey there are several ap-
proaches related to the methodology for enforcement. Of course we can reuse some
concepts, ideas and architectures from these approaches, but regarding precise tools
it is less obvious. [HKK12] assumes a trusted cloud infrastructure for policy enforce-
ment and consider machine readable policies mainly safety policies enforced by inline
reference monitors. It does not take into account the full attributes of an accountability
policy. With [BKF*11] we have a more abstract view of policy with an automatic refine-
ment matching. But still the concept of accountability is lacking and it is not obvious
how to extend the proposal to solve it. It relies on the Resource Description Framework
and associated tools which should be extended to cover access, usage control and ac-
countability. In our review we have not found a general and effective methodology to
enforce accountability policies. As shown in the state of the art in the D34.1 deliver-
able [GdOS™13], concrete policy languages are rather seldom. We expect to extend
PPL since it already provides a good set of concepts like usage control, notification,
log, etc. In fact most of the existing frameworks assume predefined user preferences
or system obligations and expect to enforce them. But here we need a more generic
approach allowing the Data Subjects, Data Controllers, auditors or others to define their
preferences and obligations. Thus we need an architecture and a methodology taking
into account this genericity. We will see later in Section 1.3 our proposed architecture
for the enforcement of accountability obligations.

FP7-1CT-2011-8-317550-A4CLOUD Page: 9 of 83

Enforcement Tools, Service Specification and Architectural Design

1.3 Obligations Mapping

In this section we give our methodology and architecture to achieve enforcement of

accountability obligations.

req AchabZJ

AAL
! '
! '

Control Board

v

Natural Obligations
|
I

translation

Temporal Logic for
Accountability
T

Simulation

synthesis

Monitoring

|
|
|
I
|
— Policy Calculus

' 1
interpretation | | translation
' '

Evidence Collection

Configuration
____________ Mapping

Sticky Policy
Framework

Accountable PPL
(A-PPL)

External Auditing

External Logging

Figure 1.4: AcclLab Architecture

Figure 1.4 presents our mapping architecture elaborated from the analysis and the
proposal made in [GdOS™13]. The kernel part of the AccLab consists of: AAL, Tempo-
ral Logic for Accountability and Policy Calculus modules. The input is the AAL module
which represents an entry point for a precise language to write accountability obliga-
tions. The concrete targets for policy enforcement are represented by the components
at the right bottom of the diagram (Sticky Policy Framework and A-PPL).

We first describe the usages we envision:

e Researchers will tune the various languages and relations using the AccLab pro-
totype. It can be used to check the readability of the AAL and also the suitability
of the current constructions. It will be used to experiment with some required
extensions, for example time expressions.

e Data Subjects but also Data Controllers or Data Processors can use it to write
their user preferences and obligations. It will be possible to check the consistency

FP7-1CT-2011-8-317550-A4CLOUD

Page: 10 of 83

Enforcement Tools, Service Specification and Architectural Design

of these obligations as well as the compliance of a user preference with a provider
obligation.

e Data Controllers can use the simulation or monitoring facilities to predict or ob-
serve the behavior of their system with accountability requirements. This means
that when the system is supplied with obligations and a simulation of the sys-
tem is launched, the observer can see whether the system is correctly executing
the accountability requirements. Firstly, a description of the system to simulate
should be provided in terms of agents interacting with messages. This consists in
a structural description of the agents and their communications, and also scripts
to represent the agent behaviors. Secondly, accountability obligations, written in
AAL, should complete the system model. This facility could be used by the Data
Controller to tune his AAL descriptions, to track bugs or misbehavior and even to
validate an accountable design.

e Data Controllers and Data Processors can use it to generate concrete policies in a
PPL style or in another concrete accountability framework. The kernel is devoted
to be a pivotal system enabling translation and configuration to several targets.

The AAL, Temporal Logic for Accountability, Policy Calculus and A-PPL components
represent processing modules for the different concrete languages which are described
with much more details in the D34.1 deliverable [GdOS™13]. Here we will focus on the
tools perspective and the enforcement of policies.

e AAL: the AAL represents the main input as a machine readable language for
obligations.

— The translation into the obligations specified in natural language describes
a simple rephrasing algorithm to help non specialist in reading AAL expres-
sions. This is clearly not sufficient for a good readability, other ideas are
discussed in [GAOS™13] but this is not the focus of the current deliverable.

— The interpretation to Temporal Logic for Accountability is a translation into a
formal language with a temporal logic and notions of resources and agents.
It formally defines the property denoted by the AAL expression.

e Temporal Logic for Accountability: from this module there are two connections.
The translation is the reverse process of the interpretation, this is a simple way to
provide something more readable after simplification or rewriting of logic expres-
sions. The synthesis consists in generating a program, in the Policy Calculus,
starting from a temporal property. This temporal property should be ensured by
the program, that is any execution of the program should satisfy the logical prop-
erty. Synthesis is a classic concept in formal verification' and often associated
with logical properties as we have here.

"http://en.wikipedia.org/wiki/Program_synthesis

FP7-1CT-2011-8-317550-A4CLOUD Page: 11 of 83

http://en.wikipedia.org/wiki/Program_synthesis

Enforcement Tools, Service Specification and Architectural Design

e Policy Calculus: it is an abstract but operational calculus including security ex-
pression, accountability, reference monitors and resources. It is expected to be
executable for simulation but also to be mapped to the more concrete languages,
like A-PPL, by Configuration Mapping. The Policy Calculus should be viewed as
a pivotal language to express and enforce accountability concepts.

e Configuration Mapping: this module represents mainly the process of mapping
the Policy Calculus to a more concrete policy language for effective enforcement.
Such mapping translates the Policy Calculus into the concrete language construc-
tions dealing with the policy enforcement. Thus the process should be defined for
each concrete policy language we expect to target, in our case it is A-PPL. Since
we expect to reuse existing tools, this module allows the configuration of the map-
ping to take into account: secure logging, evidence collection and auditing. But it
could also cope with other parameters related to specific enforcement framework
characteristics.

e Accountable PPL (A-PPL): this is our primary target for the policy enforcement.
The exact way to translate AAL sentences into A-PPL is not yet defined. There
are a set of sentences which should be translated in a direct way: access control
expressions, some data transfers and certain obligations. However, it is not so
obvious for AAL clauses involving temporal constraints and complex data disclo-
sures. The main idea is to do a projection of the AAL clauses to each agent and
resource in order to obtain expressions an endpoint can enforce.

e Sticky Policy Framework: it represents an alternative to PPL that will be designed
and implemented later in the project. We are planning to investigate cryptographic
schemes for implementing sticky policies for accountability. As part of the WP
D-3 we are planning to implement a demo of the stickiness aspect, namely the
cryptographic scheme that prevents data from being accessed unless the policy
attached to it is satisfied. The sticky policy framework is independent of the actual
policy language and operates at the lowest level of enforcement, so this work can
proceed without affecting the PPL Engine extensions.

e Control Board: it represents a tool set to define agents with their services and to
configure the kernel.

e Simulation: this consists in executing a Policy Calculus program and to observe
accountability in action. The exact presentation of the result and the interactions
with the user are not yet defined.

e Monitoring: while it is not our primary task it could provide a way to monitor real
system. For each real agent we want to monitor we create a fake agent in the
laboratory whose role is to control the real agent. The fake agents in the kernel
delegate their actions to the real agent of the running system. Since our calculus
relies on reference monitor this control is direct to implement. However, one prob-
lem is to get the control on real agents, this raises a difficult question but it is out
of the scope of this deliverable.

FP7-1CT-2011-8-317550-A4CLOUD Page: 12 of 83

Chapter 2

Extensions to the Existing Tools
and Services

In this chapter we will provide overview of the existing support mechanisms for PPL,
which was identified by the deliverable D34.1 [GdOS™13] as a candidate policy lan-
guage for the extension with the accountability features. The language is based on the
access control standard XACML with additional elements related to the usage control.

2.1 PPL Engine

Privacy policy engine supporting PPL was designed in PrimeLife project [TNR11]. The
engine supports the scenario defined as an interaction between Data Subject (DS) and
Data Controller (DC), in which Data Subject is sharing his personal data with Data Con-
troller in order to gain access to the certain services provided by the latter. After initial
DS request DC returns the service policy. This policy is matched with DS preferences
and in case of positive match DS personal data is released to the DC together with a
privacy policy. Such policy, a result of matching between DC service policy and DS pref-
erences, is attached to the piece of personal data and stored together in the Personally
Identifiable Information (Pll) repository along with this data. The policy is referred to as
a Sticky Policy in the PPL Engine specification.

The components in the Figure 2.1 depict the policy engine architecture that corre-
sponds to the described scenario.

2.1.1 Core Engine Components

The core elements of the policy engine are the components in the Business Layer:
Policy Enforcement Point (PEP) and Policy Decision Point (PDP). While the PEP acts
as an orchestrator of the enforcement process and interface with the Web Server (which
together with the elements in the Presentation layer is PrimeLife scenario specific and
we will omit it in further description) the PDP is the component where the access control
decision is taken, as well as policies and preferences are being matched. The matching

FP7-1CT-2011-8-317550-A4CLOUD Page: 13 of 83

Enforcement Tools, Service Specification and Architectural Design

Presentation

Ul
| Policy Editor |

I Matching handler I

R

Qv

Business

Web server

Event

R Handler
¥ [

PEP

?

PDP

Matching Engine Obligation

O_ Handler

| Access Control |

Q

Persistence Handler

Persistence

Policy Repository

Figure 2.1: PPL Engine Architecture

procedure, interesting from the PrimeLife project objectives point of view, was the main
concern in the implementation of the engine, however it is less significant in the cloud
scenario that is in focus of A4Cloud.

PDP relies on the access control engine implementation based on HERAS [HER]
for the evaluation of XACML part of PPL policy. Apart from the standard attribute-
based access control, the other information evaluated by the PDP at the step of access
control decision is usage authorization and the result of policy matching. The usage
authorization basically consists of the comparison of the list of purposes specified in

FP7-1CT-2011-8-317550-A4CLOUD Page: 14 of 83

Enforcement Tools, Service Specification and Architectural Design

the Data Subject preferences with the one specified by Data Controller in his policy. It
also compares the authorization for the downstream usage (use of the data by the third
parties, with whom Data Controller might share the collected data in the future).

As the personal data is stored together with the associated privacy policy in the
Database, the PDP is communicating with the PIl Store/Policy-Preference Store by the
Persistence Handler interface.

2.1.2 Event and Obligation Handlers

The PEP orchestrates two modules: the Event and Obligation Handlers. The function-
ality of the Event Handler is to fire the events related to the personal data lifecycle, e.g.
when data is deleted from the Pll store or when it is shared with the third parties.

The Obligation Handler is the component responsible for the execution of the obli-
gations that form the part of the usage control restrictions defined in the Sticky Policy.
Therefore it is initialized after the successful policy matching. It is the responsibility
of the Obligation Handler to keep track of the triggers that are part of the obligation
statements in the PPL.

Once the events are observed, which might be the case of receiving the notification
from the Event Handler for the event-based triggers or simple time-outs in the case of
the time-based triggers, the action associated with the obligation is activated by the
Obligation Engine.

The Obligation Engine specification does not propose how certain types of actions
are to be implemented. For instance, the obligations related to the secure logging are
not precisely defined and are left open for the implementation in the specific scenario.
In the next section we will try to address the necessary extensions for the PPL Engine
architecture coming from the new language elements proposed in A-PPL [GdOS™13].

FP7-1CT-2011-8-317550-A4CLOUD Page: 15 of 83

Enforcement Tools, Service Specification and Architectural Design

2.2 Interfaces Required for Integration

So far we have highlighted the main elements of the privacy policy engine implementing
the PPL specification. The extension to the PPL proposed by the WP C-4 (referred
to as A-PPL) defines richer syntax and handling mechanisms in order to provide the
accountability property for the cloud systems dealing with personal data. In this section
we will take a closer look at the interfaces which can be used in PPL Engine as the
extension points for the new functionality.

We will analyze each of the extension proposed as well as the effort required to
implement it in the extended engine architecture. The interfaces necessary to integrate
the new components are sketched in the following sub-sections. We will also provide
an updated architecture diagram containing how the policy engine integrates with the
new components.

2.2.1 Secure Logging

In order to provide extensible secure logging interface for the PPL engine, we propose
to introduce a new component into the overall architecture which will take care of all
logging related functionality during the policy enforcement and personal data handling
process. This new component, which we will refer to as Logging Handler, provides
interfaces that other components, mainly Obligation Handler, can use to register that
a certain action related to the personal data lifecycle took place. In addition to the
classical functionalities of secure logging, we will augment this Logging Handler with
an optional security feature that ensures that a Cloud Consumer cannot deny that it
requested the execution of some operations on its behalf and that the Cloud Provider
cannot repudiate that it agreed to execute these operations. It is important to note that
this additional functionality assumes that the Cloud Provider and the Cloud Consumer
are never trusted, and it can easily be employed in the case of dispute between the
Cloud Provider and the Cloud Consumer. We will refer further to this security feature as
“Logging with non-repudiation”.

Now to implement this secure logging interface, we will define in addition to the Log-
ging Handler, a Crypto Module that will perform the cryptographic operations that one
will need to ensure basic secure logging operations together with the non-repudiation
functionality.

Logging With Non-Repudiation

To achieve logging while assuring non repudiation, we propose to implement a fair ex-
change protocol that involves both the Cloud Provider and the Cloud Consumer and
relies on message exchanges between these two entities. At the first phase of this ex-
change, the Cloud Consumer requests the logging of one or several consecutive events
by sending an undeniable proof of that request. The Cloud Provider should first verify
this proof: therefore the Logging Handler contacts the Crypto Module to verify the sig-
nature of the initial request. If the signature is correct then the Logging Handler logs

FP7-1CT-2011-8-317550-A4CLOUD Page: 16 of 83

Enforcement Tools, Service Specification and Architectural Design

the required action or set of actions and sends an undeniable signature to the Cloud
Consumer with the help of the Crypto Module again.

As also defined in [Ate], to achieve fairness, that is, to allow the Cloud Consumer
to receive the proof of logging actions and prevent him to deny his request, the previ-
ously sent messages were in fact encrypted. Indeed, signatures alone do not guaran-
tee fairness since the Cloud Provider could deny having received a certain signature.
Therefore, entities send their signatures encrypted (but verifiable) and during the sec-
ond phase of the protocol, each entity sends the decrypted version of the signatures
which is considered as the original proof of requests and logs. Thanks to this second
phase, the Cloud Provider can show that it has received the Consumer’s consent for
the logging of that specific event or set of events, while the Cloud Consumer has an un-
deniable proof that the Cloud Provider agreed to log those events. In case of disputes,
any entity can contact a trusted third party (for example, the Auditor) which can decrypt
any of the previously sent messages and identify the malicious entity.

Cloud

Infrastructure
>) >
)% ,R.\ Logging i Crypto
~ Handler Module
Cloud LogRequest - Werify/OKl
Consumer N

\) J/

Figure 2.2: Logging with Non-Repudiation

Figure 2.2 illustrates the new components and communication channels that are
used in the described scenario.

2.2.2 Evidence Collection

Some accountability scenarios require the collection of the evidences defined by the pol-
icy itself. Work Package C-8 is currently working on the definition of different evidence
types. For example, Cloud Consumer may want to ensure transparency in service de-
livery chains and asks the Cloud Provider to provide data transmission timestamps for
communication among providers.

On the other hand, a Cloud Consumer may wish to request some evidence on the
retrievability of the data. In order to tackle these scenarios in the policy enforcement
framework, we propose to define a new Evidence Collector component, which based
on the policy, collects the evidences required for any accountability action.

As the work regarding the evidence collection is at the early stage, we defer from
providing an architecture of this component here. We propose that the Evidence Col-
lector interacts with the Obligation Handler component from the PPL Engine.

FP7-1CT-2011-8-317550-A4CLOUD Page: 17 of 83

Enforcement Tools, Service Specification and Architectural Design

2.2.3 Audit

Language extension in A-PPL related to audit is one of the requirements that has to
be taken into account by the proposed engine architecture. We plan to cope with it
by extending the initial PPL engine architecture with the components facilitating the
auditing procedures.

The core functionality allowing auditing of the actions taken by the engine is the
Logging Handler component described earlier in this chapter. Additional considerations
has to be also taken with respect to the Obligation Handler module, that manages the
enforcement of the policy statements related to the Data Controller obligations, as well
as the Event Handler component, which executes the data related obligations.

Also the central modules responsible for the evaluation of the policy and the policy
enforcement (PDP and PEP) need to provide a means to observe, control and check,
whether the execution of the process is correct and corresponds to the policy and the
policy language specification, which highlights how the decision process should take
place.

Therefore, we propose to add a central component for handling the audit requests,
which will facilitate the process of retrieving the necessary information from the sys-
tems (logs related to obligations, notifications, access control decisions and personal
data lifecycle). Furthermore, each component in PPL architecture that is related to this
information (Obligations Handler, Event Handler, PDP and PEP) will be extended with
the logging adapter that will make it possible to record all data sensitive actions in a
non-repudiable manner. The adapter will need to implement simple interface, based on
the interaction with the Logging Handler from Section 2.2.1.

By accessing the central Audit component, the auditors (internal or external), can
gain the insight into the operations of the engine and correlate these information with the
policies that were deployed. The component also needs to make sure that information
retrieved from the audit logs does not leak the personal data collected in the cloud
system nor any other business sensitive information. Yet it should allow the auditors to
simplify the often cumbersome and time-consuming task of collecting all required input
from a software system. It might be also envisioned that evidences collected by the
component introduced in Section 2.2.2 will also contribute to the auditing process.

We have depicted the architecture elements that will take part during the external
audit in Figure 2.3. To simplify the orchestration of this process, we will allow only three
components to provide the input: Obligation Handler, Logging Handler and Evidence
Collector. The information provided by all other components (PDP, PEP and Event
Handler) is going to be already accessible via Logging Handler.

2.3 Extended Policy Enforcement Engine Architecture

The elements proposed in this section are a building blocks for the new enforcement
functionality that was proposed in the accountable version of PPL. They can be easily
integrated into the PPL Engine thanks to the extensibility of the generic components like
Obligation Handler.

FP7-1CT-2011-8-317550-A4CLOUD Page: 18 of 83

Enforcement Tools, Service Specification and Architectural Design

X

Auditor
R

Y

Audit

TS

Obligation
Handler

Logging
Handler

Evidence
Collector

Figure 2.3: Audit

¥

Auditor
R
Business ¥
PEP
i—o.‘ Event .
+ Handler Audit
R R
PDP >
R
Matching Engine - Q A\l
| Access Control
»
Obligation &
Handler V\J
Persistence Handler
Logging Handler

Persistence

Policy Repository

Figure 2.4: PPL Engine with the interfaces for the extension

FP7-1CT-2011-8-317550-A4CLOUD

Evidence Collector

Page: 19 of 83

Enforcement Tools, Service Specification and Architectural Design

In Figure 2.4 we show how the new components fit into the architecture described in
Section 2.1. Apart from the implementation of the Audit component, which will require
necessary changes in all of the initial engine modules, we can assume that the rest
of the extensions would do not impose so severe modifications. They will most likely
resemble a standalone, pluggable elements of a larger accountability toolset.

FP7-1CT-2011-8-317550-A4CLOUD Page: 20 of 83

Chapter 3

Data Transfer Control Toolkit:
Architecture and Design for The
New Enforcement Tools

We will focus now on the design of the additional tools we plan to provide in this work
package, especially related to the controlling data transfer in the cloud, that is a second
goal of this work package. Together with the AccLab from Chapter 1 and the PPL Engine
extensions described in Chapter 2 they will complete the robust policy enforcement
framework.

3.1 Motivation for Data Transfer Control in the Cloud

Heterogeneous cloud infrastructures make it difficult to have effective controls to check
privacy and other compliance constraints in an automated way. Cloud consumers have
no means to verify that their policy requirements are being fulfilled.

Automated assurance is necessary to quickly evaluate the evidence that obligations
with respect to personal data handling and business compliance requirements are being
carried out (for instance, the collection of events showing who created a piece of data,
who modified it and how, and so on). Governance, Risk management and Compliance
(GRC) frameworks (e.g. SAP GRC') are a common means of automating compliance
in enterprises but do not provide much breadth or strong co-design of technical and
legal mechanisms and although they can target specific regulations, they rarely deal
with concepts like privacy and transparency, with the notable exception of recent work
within CSA GRC Stack?.

The accountability and privacy enforcement tool will enable enforcement of policies
in ways that can be verified and audited. It will comprise a secure architecture facilitat-
ing verification of security and privacy requirements by external auditors as well as can

'http://scn.sap.com/community/gre, last visited on 22/11/2013
*https://cloudsecurityalliance.org/research/grc-stack/, last visited on 22/11/2013

FP7-1CT-2011-8-317550-A4CLOUD Page: 21 of 83

http://scn.sap.com/community/grc
https://cloudsecurityalliance.org/research/grc-stack/

Enforcement Tools, Service Specification and Architectural Design

provide notifications to end users. It receives as input machine-readable representa-
tions of policies in the accountability policy language, for instance, A-PPL, and takes a
data-centric approach for the usage, monitoring, and obligation enforcement.

3.2 Introduction to Data Transfer Control Toolkit

Figure 3.1 presents the architecture for accountable personal data tracking in the cloud.
The architecture is generic and can be used not only for monitoring personal data trans-
fers, but also potentially any sensitive data. This may include business sensitive data
(e.g. financial records, product designs, intellectual property, etc). At each service layer,
we add a reference monitor, interacting with the policy engine components (illustrated
in Figure 2.1). The accountability service (AS) interacts with the reference monitors to
provide the interface with different users (Cloud Consumer, external auditors or Cloud
Service Provider) The information collected by the reference monitors is then processed
by AS, from which auditors and Data Controllers can check compliance to data privacy
regulations, contracts and security standards. AS will manage the data segregation for
multiple tenants by using cryptographic means, this is further discussed in Section 3.10.

@)

W

Data Controller

©)

o

Data Subject

n~

]
Saas level
monitor

@)

Accountability
service

Auditors

Datacenter 1

N
1aas level
monitor

Datacenter n

Figure 3.1: Data tracking architecture

Effective and profitable utilization of cloud services relies on data transfer and stor-
age across services and different cloud infrastructures (which may have different juris-
dictional restrictions). An open problem is how to find a balance between data prove-
nance and related privacy or other regulatory constraints in the cloud, where physical
perimeters are not clearly delimited. The lack of tools to support data localization and

FP7-1CT-2011-8-317550-A4CLOUD Page: 22 of 83

Enforcement Tools, Service Specification and Architectural Design

transfer across services and cloud infrastructures creates barriers to cross-border con-
siderations and different jurisdictional restrictions. Incompatibilities between jurisdic-
tions affect privacy assurance. Even within the EU, regulatory requirements are defined
at a national level and can differ.

The Data Transfer Control Toolkit addresses the lack of tools to support account-
able data localization and transfer across cloud software, platform and infrastructure
services, usually run by data processors. We designed a framework for automating the
collection of evidence that obligations with respect to personal data handling are being
carried out in what concerns personal data transfers.

3.3 Data Tracking Challenges in the Cloud

In this section we explain the challenges in data tracking in the cloud.

In order to effectively enforce privacy obligations the data should be tracked at all
levels in the cloud ecosystem (application, platform, infrastructure). Currently the re-
lationships between the virtual and physical data locations are not transparent to the
cloud consumers (Data Subjects, Data Controllers) [KLP11], thus creating a serious
barrier, which is preventing the providers from achieving accountability. The virtual-
ization, employed in cloud computing, creates a level of indirection that obscures the
physical location of the data in the cloud. This mapping is performed by a laaS solution
and is usually dynamic and opaque to the cloud users. Physical borders of the cloud
infrastructures are also vague, hence often Data Controllers are not aware of where the
data resides (at which Data Processor, in what country).

There are two types of transfers: the data can be transferred either vertically, that is
from one service layer to another, or horizontally, i.e. in a given layer, data is moved due
to elasticity, load balancing, backup, etc. Examples of horizontal transfers are: VM mi-
gration to another host (infrastructure level), migration of a tenant to another database
server instance (platform level), as well as replications performed by the CSP for en-
abling disaster recovery, that are usually unknown to the cloud consumer (software,
platform and infrastructure levels); examples of vertical transfers are: storing Data Sub-
ject’s personal data in a database record, flushing a database record to disc. During
data transfers in the cloud, the association between the data representation at a given
service level, its sensitivity, the responsible Data Controller and related obligations are
difficult to map. Monitoring both vertical and horizontal data transfers and maintaining
this association to the Data Controller’s obligations is essential to ensure accountability.

3.4 Data Tracking Monitors

In this section we describe our architecture for monitoring data transfers in the cloud
that utilizes Data Tracking Monitors?.

Splease note that this name maybe a subject to change in the future versions to avoid the confusion
with Data Track tool that is also planned to be delivered in the scope of A4Cloud project and that is aiming
to provide the PII tracking visualization specifically for Data Subjects

FP7-1CT-2011-8-317550-A4CLOUD Page: 23 of 83

Enforcement Tools, Service Specification and Architectural Design

DTM
| Audit trail Py Cloud
% extractor ~ services
Tenants %
KB* |

extractor
[
D
K

Data)
tracking ata trBaf:klng
logs

*Knowledge Base

Figure 3.2: Data Tracking Monitor Architecture

Figure 3.2 illustrates the DTM architecture. In this approach DTM has a proxy that
monitors all API calls from tenants (e.g. Data Controller or cloud platform administra-
tor) to the cloud services, and extracts the audit trail in the format defined in Sec. 3.9.
The DTM can optionally query the cloud services for some additional information. Fur-
ther, the audit trail is used to construct data tracking knowledge base that represents
operations on personal data as logical facts, suitable for automated analysis by the AS.

3.5 SaaS and PaaS Monitoring

We show some examples of operations at the platform level influencing on data trans-
fers. In our use case, a database server instance is shared by multiple tenants at the
application (SaaS) level. We associate the tenant id to the Data Controller and the cor-
responding data subject’s personal data set identifier. This can be done at the moment
of the tenant creation, for instance. Below we present some examples inspired from the
SAP HANA Cloud Platform API [SAP13]. For database tenant creation, the RESTful
PaaS level API calls observe the following schema:

URL https://(host)/persistence/admin/tenants/(name)
Method | PUT

Returns | 201 Created and tenant JSON

400 Bad Request

403 Forbidden

500 Internal Server Error

A concrete example in JSON format would be as follows:

https://paasport.com/persistance/admin/MarcheAzur/ fidelity
HTTP/1.1 200 OK

X—Compute—Request—ld: req—c461e07—-9b18—-4d9c—898b—37262fd9063
Content—Type: application/json

Content—Length: 1420

Request Method: PUT

FP7-1CT-2011-8-317550-A4CLOUD Page: 24 of 83

Enforcement Tools, Service Specification and Architectural Design

Date: Mon, 27 May 2013 07:42:02 GMT

{

"create” : {

"name” : ”"MarcheAzur”,

"database” : "paasport_.instance_1”,
“creation_time” : ”2013—07—-16.3:11._pm”,
"creator” : "pass_provider.db_admin”,
"dbuser” : ”db_admin”,

"password” : “"admin1234”

}

}

The response for this request is the following:

{ "database_space”: {
7id”: "34465727—-8c79—22a0—6b24—567f565bc83c” ,
"tenant.id”: ”MarcheAzurFR"”,

"creator” : "paas_provider_db_admin”,
"dbuser” : ”"._.db_admin”,
"name”: ”fidelity_program?”,

"created”: "2013—07—16T15:11:10Z2",

"hostld”: "e4d909c290d0fb1ca068ffaddf22cbd0”,

”jdbcconnection”:
"jdbc:sap:dbdriver://dbhost1.paasport.com:2323”,

A second example of operation monitored at the PaaS level is to migrate a tenant

database to another database server instance with distinct performance:

https://ma.paasport.com/persistance/admin/MarcheAzur/ fidelity
HTTP/1.1 200 OK

X—Compute—Request—Id: req—c41e07—9b18—4d9c—898b—3762fd9063
Content—Type: application/json

Content—Length: 1420

Request Method: PUT

Date: Mon, 27 May 2013 07:42:02 GMT

{ "migrate_tenant” : {
"name” : "MarcheAzur”,
"database” : "paasport_.instance_2”,
"creation_time” : ”2013—07—17.00:11.am”,
"creator” : "pass_provider_.db_admin”,
"dbuser” : ”".db_admin”,
"password” : "admin1234”
}

}

Whose response would consist in the following:

{ "database_space”: {
"id”: ”34465727—-8c79—22a0—6b24—567f565bc83c” ,
"tenant.id”: ”"MarcheAzurFR”,

"creator” : "pass_provider_.db_admin”,
"dbuser” : ”".db_admin”,
"name” : "MarcheAzur” ,

"created”: "2013—07—16.T00:15:10Z",

"hostld”: "e4d909¢290d0fb1ca068ffaddf22cbd0”,

”jdbcconnection”:
"jdbc:sap:dbdriver://dbhost2.paasport.com:2323",

FP7-1CT-2011-8-317550-A4CLOUD

Page: 25 of 83

Enforcement Tools, Service Specification and Architectural Design

In summary, many operations at the platform level can have implications to data
transfers. The strength of our approach is to provide mappings from a service delivery
layer to the underlying ones.

At the SaaS level, APls are application specific. The SaaS provider is then respon-
sible to adopt a privacy management approach and to identify which sensitive parts of
the business process can transfer personal data from and to external systems, pos-
sibly under the control of third parties, and subject to regulatory constraints. Specific
privacy concerns for the use case described here exist, some of them are mentioned
in [YSSdO12].

3.6 laaS Monitoring

At the infrastructure level, we monitor read-write accesses from upper layers or transfers
occurring within the infrastructure, or between two laaS providers. In this work we
analyzed relevant operations provided by the OpenStack API [Ope]. OpenStack is an
open source cloud solution that provides compute, network and storage services. Any
operation required by a tenant or an admin user is performed through the API.

In OpenStack, we distinguish three types of entities that can hold data: instances,
volumes and object stores. Instances are virtual servers managed by the compute
service. They can store data in their file system. Volumes are block storage entities. A
tenant can create a volume of the desired size and attach it to an instance. A volume can
only be attached to a single instance at a time, but can be detached and attached to any
instance. It can be seen as an external hard drive being plugged to a virtual machine.
Object store is a persistent storage for static data. Creation, configuration and deletion
of these entities can be detected by monitoring the API calls to the services that manage
them.

Data can then be transferred within the infrastructure due to mechanisms such as
snapshot, replication, instance migration, etc. For instance, let us assume there is a
virtual machine, in which is stored a file with the mail addresses of the data subjects.
When a snapshot of the instance is required, the mail addresses will be copied and
included in the snapshot. The snapshot is managed by the OpenStack image service,
thus will be stored in the host that owns the service. From this point, the tenant can
create several virtual machines using this snapshot. Therefore, the mail addresses will
also be stored in the new instances that are booted on the snapshot image. When the
data is stored in a volume, it will also be duplicated when a snapshot of the volume is
requested. Then, a new instance can boot on the volume snapshot, or a new volume
can be created from this snapshot, resulting in a data duplication in both cases. At
the volume creation, a scheduler defines the storage node on which it will be located.
The OpenStack Object Storage service can be used to store backups of volumes and
instances. The objects stored in OpenStack are replicated to ensure availability. Thus, a
file will be copied at least on three disks, preferably located in different availability zones
in the OpenStack cloud. For load-balancing purposes, a data replicate might be moved
from one place to another. Due to load balancing operations or after a (physical) host

FP7-1CT-2011-8-317550-A4CLOUD Page: 26 of 83

Enforcement Tools, Service Specification and Architectural Design

failure, an instance might be migrated from one server to another. All the operations
described above result in duplication of data, where the data duplicate could either be
located in the same region or country, or in a different one.

Data transfers can also occur between two laaS providers. Indeed, one could use
a cloud infrastructure for computing services and another one for storage services. We
can again use the OpenStack example, that has a compatible API to the Amazon S3
API. Thus, we could easily imagine a scenario involving OpenStack and Amazon clouds
together.

In an OpenStack environment, the DTM monitors all the API calls to log the events
and to fill the data tracking knowledge base. It also has to send API requests to the
OpenStack services in order to get the details about the servers that are not present in
the monitored API calls. In particular, if the tenant requests a VM migration, the new
host is not given in the response message. Moreover, some information are not given
to a normal tenant, while it can be obtained if the tenant has an admin role. We assume
our tool would get the same level of information as an admin tenant.

The Knowledge Base Extractor uses a logical knowledge engine called PyKE [Fre08],
which allows performing logic programming in Python. Logic programming lends itself
well to this case, since it makes it straightforward to perform pattern matching on mes-
sages, and to generate decisions based on available facts. The following code excerpt
illustrates facts from the data tracking knowledge base:

#Volume Snapshot creation request
#volume_snapshot_creation (name, description, volume.id)

volume_snapshot_creation_req(database_volume_replication,
volume_Snapshot_for_.PaaSPort_.DB_Duplication,
€26a64348a5040458a524d5fff7d313e)

These facts showing the volume snapshot creation are built from the original request
given below, intercepted by the DTM:

POST /v1/93859¢f00e7741d4bdb6a37285cc827a/snapshots HTTP/1.1
Host: 10.55.129.42:8776
Content—Length: 145
x—auth—project—id: admin
accept—encoding: gzip, deflate
accept: application/json
x—auth—token: 0d608bb2235040ffb557fef2bbee826d
user—agent: python—cinderclient
content—type: application/json

{"snapshot”: {"display_-name”:
"volume_Snapshot_for_.PaaSPort_DB_Duplication”,

"force”: ”"True”, "display_-description”: null,

"volume_id”: "e26a6434—8a50—4045—8a52—4d5fff7d313e"}}

The HTTP response contains the following information:

HTTP/1.1 200 OK
X—Compute—Request—I1d:
req—2260d35f —6503—4aa2—aa35—7a1a1558c5b0
Content—Type: application/json
Content—Length: 251
Date: Tue, 25 Jun 2013 06:57:00 GMT

FP7-1CT-2011-8-317550-A4CLOUD Page: 27 of 83

Enforcement Tools, Service Specification and Architectural Design

{”snapshot”: {”status”: "creating”,

"display_name”:
"volume_Snapshot_for_.PaaSPort_DB_Duplication”,

"created_at”: "2013—06—25T06:57:00.463182",

"display_description”: null,

"volume.id”: "e26a6434—8a50—4045—8a52—4d5fff7d313e”,

7id”: ”0e55163e—794f —4712—87d6—ec10e9070941" ,

"size”: 1}}

In our running example, this corresponds to creating a copy of the volume containing
the PaaSPort database server instance. Below we show part of the rule set for tracking
volume duplication and attachment to server instances in OpenStack. These capture
the fact that volume snapshots can be used to boot server instances. The holds pii
predicate is used to “tag” an infrastructure object as containing personal data for a given
data subject group (data_subjects_id):

personal_data_propagation_volume
foreach
iaas_level_rules.holds_pii($instance.id, $data_subjects.id)
iaas_level_rules.os_volume_attach($instance_id, $volume.id)
assert
iaas_level_rules.holds_pii($volume_id, $data_subjects._id)
personal_data_propagation_vol_snapshot
foreach
iaas_level_rules.volume_snapshot_creation($name,
$description, $volume._id)
iaas_level_rules.volume_snapshot_creation_resp ($name,
$description, $volume.id, $snapshot.id)
iaas_level_rules.holds_pii($volume_.id, $data_subjects._id)
assert
iaas_level_rules.holds_pii($snapshot_id, $data_subjects_id)
personal_data_propagation_vol_creation
foreach
iaas_level_rules.create_volume._req($snapshot._id, $name,
$availability-zone , $attach_status, $project_id)
iaas_level_rules.holds_pii($snapshot_id, $data_subjects_id)
iaas_level_rules.create_volume_resp($status,
$display_.name, $snapshot_id, $volume.id)
assert
iaas_level_rules.holds_pii($volume_id, $data_subjects._id)
personal_data_propagation_vol_attach
foreach
iaas_level_rules.os_volume_attach($instance_id, $volume.id)
iaas_level_rules.holds_pii ($volume.id, $data_subjects_id)
assert
iaas_level_rules.holds_pii($instance.id, $data_subjects.id)

3.7 Topology

In order for the AS to get the physical location of data related to a specific Data Con-
troller, we introduce a topology knowledge base that captures the mapping between the
virtual machines, images and volumes on one side and their physical representation
(availability zones, network, host) on the other side.

In particular, it describes the physical boundaries of the infrastructure, the mapping
between virtual servers and physical hosts and the location of the hosts. The mapping

FP7-1CT-2011-8-317550-A4CLOUD Page: 28 of 83

Enforcement Tools, Service Specification and Architectural Design

DTMs %
Topolo
pKB*gy Auditors
ot tQ O

] [I
ry | 7| Data location O Audit
O | | interface & interface
Data
controller | g
v
rp| | Service Authorizations
O chain builder KB*
Data
Processor(s), Accountability service

*Knowledge Base

Figure 3.3: Accountability service architecture

is provided and managed by the infrastructure provider, in contrast to AS, and hence
its trustworthiness is linked to that of the CSP. As data processor, the the laaS provider
is responsible for creating and maintaining this information up to date, as it is the only
entity aware of the constantly changing physical landscape of the cloud infrastructure.
We estimate that the cost of maintaining this information is negligible, as network ad-
ministration practices already require to keep this kind of record. The following code
excerpt illustrates facts contained in this knowledge base:

#host (host_name, host_id)
host(Infrared_IE , e9ef8cf20d89f8eebcfab)

#Determines where a host is located
#host_location (host_.name, location)
host_location (Infrared_1E, lIreland)

#Instances for a given host

instance_host(host.id, instance.id)

instance_host(e9ef8cf20d89f8eebcfab ,
ad4ab4ef7c92264d1c8c14958f8d614318)

The excerpt above shows the mappings among data processors and the corre-
sponding data handling objects at the infrastructure level. Additionally, it also relates
the hosts maintained by the infrastructure provider to their actual physical location.

3.8 Accountability Service

Figure 3.3 illustrates the architecture of the AS. The main component in AS is Data loca-
tion interface, that enables Data Controllers and auditors to determine the location of the
Data Subjects’ data entrusted to the Data Controller: both logically (i.e the virtual hosts
which store the data) and physically, because the geographic location of the servers is
known. In particular, it returns all Data Processors holding the Data Subjects’ data, the
sensitivity category of personal data and the physical storage location at the country
level. This allows Data Controllers to check their state of compliance with the privacy
obligations: they could determine potential unauthorized transfers of personal data to

FP7-1CT-2011-8-317550-A4CLOUD Page: 29 of 83

Enforcement Tools, Service Specification and Architectural Design

other parties and storage in a country, which is not considered as offering sufficient data
privacy protection guarantees.

In order to provide this response the Data location interface aggregates information
from all the DTMs — more precisely from data tracking knowledge bases — in the cloud
ecosystem of this particular Data Controller. In addition, it makes use of the Topology
KB (see 3.7) in order to derive the physical location of the data; and Authorizations KB,
that captures the data processors and other third parties that are authorized by Data
Controller to process its Data Subjects’ personal data. This database is filled together
by the Data Controller and Data Processors (Data Processors can further delegate the
processing to other parties with the prior permission of Data Controller and consent
from the data subjects). Thus, if there is a transfer of the personal data to a party
outside this list, it is deemed as a violation of privacy obligations.

The following code snippet shows possible facts in Authorizations KB:

data_subjects (1000, Europe)

data-controller (MarcheAzur, 1000, France, SaaS)
data_processor (PaaSPort, Germany, PaaS)
data_processor(Infrared, Ireland, laaS)
authorized_party_transfers (MarcheAzur, PaaSPort, 1000)
authorized_party_transfers (PaaSPort, Infrared,1000)
authorized_location_transfers (Europe, Germany, 1000)

The following code shows a forward chaining query to identify the multiple locations
the data for a given data subject set:

personal_data_location

foreach
iaas_level_rules.instance_host($host_id, $instance_id)
iaas_level_rules.host($host_.name, $host_id)
iaas_level_rules.host_location($host.-name, $location)
iaas_level_rules.holds_pii($instance.id, $data_subjects.id)

assert
iaas_level_rules.personal_data_location($data_subjects_id ,
$location)

with fc_goal.prove(engine,
data_subjects_id1=data_subjects.id1) as gen:
for vars, plan in gen:
print "%s.is.located.in. %s” % \
(data_subjects_id1, vars[’'location1’])

Auditors could check all operations performed on personal data and verify if there
were any possible violations with respect to data transfers. This also relates to the
Cloud Trust Protocol, as it provides a way to respond to the Element of Transparency
number 8 which requests disclosure about geographic location of “units (including data
sets) being used on behalf of the consumer’[KE10].

3.9 Audit Trails

In order to enable the correlation between the logs from different service levels coming
from various sources, we define a common log entry structure, adapted from [KLP11]:
(Actor, Operation, W hen, W here)

FP7-1CT-2011-8-317550-A4CLOUD Page: 30 of 83

Enforcement Tools, Service Specification and Architectural Design

Where:

e (Actor) is the initiator of the operation and can be the tenant id, CSP operator
name, etc.

e (Operation) is the action on the personal data item. The actual operations are
dependent on the implementation and on the service level. In order to normalize
these differences we distinguish the following operation categories as the one
that are related to data tracking: Create, Read, Update, Delete, Copy — which
are mapped to actual operations.

e (Data) is the identifier of the data object, under which the operation is performed.
It is linked with a personal data category and Data Controller(see Section 3.4).

e (When) is the event date and time.

e (Where) is the data processing location. Depending on the service level this can
be a database server instance (platform level), a virtual disk volume, a physical
host IP or the geographic location (infrastructure level).

Depending on the service level these elements differ and are described in the fol-
lowing sections. Logs coming from different sources are normalized according to this
format, translated into logical facts and stored in the DTM knowledge base (detailed
below).

3.10 Security Considerations

Here we describe some preliminary analysis of possible threats to the solution and pro-
pose some mitigations. We will provide a detailed attacker model in the next phases of
the work on the D3 work package in order to design “tamper proof” policy enforcement
mechanisms. The main assumption in this work is that the CSPs are trusted and they
would configure their service so that all control operations flow through DTMs. Other-
wise CSPs would fail to provide transparency with respect to the location of the data
processing, ultimately losing market share.

An adversary tampers with the logs or knowledge bases generated by a DTM
Our solution has to protect the integrity of the logs. The principle of forward secu-
rity [SK98, MT09, YNO9] can be applied to the logs, that is an attacker must not be able
to undetectably modify or delete log entries that were generated before the compromise.
Integrity of logs or data tracking knowledge bases can be protected by adding a Mes-
sage Authentication Code (MAC). In this case, the DTM could sign all log entries with
a private key, provided e.g. by a Trusted Platform Module (TPM)* and Auditors could
verify their integrity. We also consider that our DTMs will consume trusted timestamps
and that further configuration data have also been certified by audits to minimize this
risk.

*http://www.trustedcomputinggroup.org/resources/tpm_main_specification

FP7-1CT-2011-8-317550-A4CLOUD Page: 31 of 83

http://www.trustedcomputinggroup.org/resources/tpm_main_specification

Enforcement Tools, Service Specification and Architectural Design

An adversary steals the logs generated by a DTM Audit trails generated by DTMs
(see Sec. 3.9) can contain sensitive personal data. Thus, the confidentiality of data
tracking logs has to be protected. Confidentiality of the logs can be obtained through a
combination of symmetric and asymmetric encryption (for performance reasons), where
the private key is shared between the Data Controller and Auditors. Moreover, to ensure
segregation between the different Data Controllers, the encryption keys will be specific
to each Data Controller, as he is liable for the personal data location. Particular situa-
tions may demand to extend keys to data processors if contractual provisions are made,
or also in the case of joint Data Controllers (also called co-controllers).

An adversary tampers with the DTM As the DTMs are located in the CSP’s premises
(for performance reasons) they are specifically vulnerable to tampering. In order to
ensure the generation of evidence by DTMs is not tampered with, apart from proper
physical and logical access control, they could use TPMs for remote attestation of DTM’s
configuration.

CSP is intentionally bypassing DTM If a CSP uses a covert channel instead of
the service APls, potential violations can happen without being detected. This risk
is somewhat diminished in case of frequent on-site audits, but should still be taken
into account. Our DTM can be incremented with additional rules to identify such data
transfers by observing events are the OS level and at the networking interfaces.

A malicious software makes transfers to unauthorized locations If the software
running on CSP premises, e.g. a SaaS solution, is provided by a third party, there is
a threat of it sending data to locations without the consent of other parties. For this,
it may intentionally use covert channels instead of common API monitored by DTMs.
This could be mitigated by monitoring not only the normal API calls but all the outside
communication at the network level, using e.g. an application-level gateway. The logs
of this gateway could also be collected by AS to enable later inspections.

Data protection authorities abuse of data tracking The PRISM scandal® showed
that the threat of a State spying on the communications between civilians in the Cloud
is real. Any solution, including this one, allowing the authorities to track all data move-
ments should be assessed against the threat of possible abuse. The ideal approach
would be to have completely anonymized logs, at the same time capturing other impor-
tant information (responsible Data Controller, data sensitivity, location, etc.).

The design and experimental implementation of the assurance mechanisms to pro-
tect the data generated and handled by the Data Transfer Control Toolkit will be the
subject of the coming tasks in scope of this work package, along with other improve-
ments.

*http://www.theguardian.com/world/prism

FP7-1CT-2011-8-317550-A4CLOUD Page: 32 of 83

http://www.theguardian.com/world/prism

Enforcement Tools, Service Specification and Architectural Design

Conclusions

The main goal of this document is to pave the way towards implementation of the tools
for policy enforcement and compliance. We have presented the need for the additional
tooling related to the accountability policies (AccLab) as well as the candidate technol-
ogy for a work related to policy enforcement (PPL Engine).

AccLab will be further developed in scope of the task that is aimed to deliver ac-
countability and privacy enforcement tools. We have provided overview of the architec-
ture and positioned the tool in the overall policy enforcement framework. As the work
related to the enforcement methodologies continues in the scope of WP C-4, we are
planning to integrate the results of that work in the agile manner in our ongoing devel-
opment process.

After overview of the current state of the policy enforcement tools for PPL, we have
established a feasibility of supporting the extensions envisioned in the A-PPL, intro-
duced by the A4Cloud policy framework. The extensions related to logging, audit and
evidence collection are of major focus when accountability is concerned. Thus we have
planned to further investigate the progress related to the techniques planned to be de-
livered by WP C-4. However in case of the actual policy enforcement, we can already
envision that the primary focus will be to adapt the existing PPL Engine to support the
new language constructs. After that step, the additional mechanisms designed and
described in this report, can be included to support each of the extended language
feature.

The complementary enforcement framework related to the sticky policies will be also
one of the major focus for the implementation task. In this document we have positioned
the tool in the overall enforcement architecture, however a detailed architecture is still a
work in progress.

In parallel with the accountability and privacy enforcement tools, the effort in this
work package is split on data transfer control toolkit. This document provides a working
example of such tool, with a detailed architecture view, as well as a use-case, selected
among the three use-cases produced by WP B-3 [BOS'13]. As the tool itself presents
quite complete approach for the data tracking in the cloud ecosystem, we may further
work on generalizing the approach and removing some of the constraints (e.g., related
to the necessary cloud landscape adaptation) as well as the performance related con-
cerns (processing large amount of log data produced by a cloud landscape). The im-
plementation work on this tool will continue in the scope of the task aimed at developing
tools to control data transfer in the cloud.

As the policy enforcement tools are just one group of the software components
building up overall A4Cloud tools architecture, we need to further investigate how the
mechanisms related to the policy enforcement will interface with the external compo-
nents. Such composition of the tools is briefly mentioned in the sections related, e.g.,
to evidence collection. Also overall AccLab architecture gives a possibility for both in-
put (e.g., contracts) and output (concrete enforcement mechanisms) flows of data and
messages between the tools delivered by the other work packages.

As the secondary objective for this report we are contributing to the A4Cloud ref-

FP7-1CT-2011-8-317550-A4CLOUD Page: 33 of 83

Enforcement Tools, Service Specification and Architectural Design

erence architecture. We have documented the envisioned architecture of the tools, as
well as introduced the interfaces where such tools can be further extended or combined
with the other A4Cloud tool chain. We plan later on to analyze the cross-work-package
concerns related to the integrated accountability tools landscape. A dedicated effort in
WP D-2 ("Reference Architecture”) will help to adapt the tools for the policy enforcement
in order to deliver interoperable toolkit for accountability in the cloud.

FP7-1CT-2011-8-317550-A4CLOUD Page: 34 of 83

Appendix A

Enforcement Methodologies
Survey

The development of the enforcement methodologies has been recently initiated in WP
C-4 ("Policy mapping and representation”). We report here our first investigations on
this subject, performed as a preliminary study established at the initial phase of the
work package.

We first review some related work for policy enforcement and more specifically in
a cloud context. There are currently several proposals related to enforcement policies
in the cloud but mainly for security policies. These proposals discussed tools, frame-
works and methodologies but mainly technical solutions related to access control or
more broadly usage control. An holistic view of accountability from legal and regulatory
obligations to software enforcement is generally lacking.

One may note the survey in [FJWX12] about accountability. It evaluates several
approaches and it proposes to consider three aspects: time/goals, information, and
action for accountability systems. The time/goals identifies five steps:

e Prevention, this step is concerned with managing security issues.
e Detection, this step is related to the detection of a violation.
e Evidence, this step gathers or stores evidences about a violation.

¢ Judgment, this step identifies the violator of a policy and more generally, all the
persons involved in it.

e Punishment, this step is concerned with remediation and sanction actions.

The information aspect is related to privacy and not related to the enforcement question.
Action aspect is related to some collaboration issues and the processing of the previous
steps. The time steps give a general flow which can be valuable to understand and
design an accountability framework.

In [HKK12] the authors identify several challenges for information assurance in the
cloud: the semantic diversity of data, the internal structure of the cloud system and the

FP7-1CT-2011-8-317550-A4CLOUD Page: 35 of 83

Enforcement Tools, Service Specification and Architectural Design

accountability policies. The semantic diversity of data implies that policies should ap-
ply to a wide range of data from structured to unstructured. Access control granularity
and information processing can be different. A general framework for policy enforce-
ment should consider three dimensions: (1) data type (e.g., relational data, RDF data,
text data, etc.), (2) computation (e.g., SQL queries, SPARQL, Map/Reduce tasks, etc.),
and (3) policy requirements (e.g., access control policies, data sharing policies, privacy
policies, etc.). The authors propose a framework supporting context-based access con-
trol and privacy preservation rules. For the enforcement they rely on in-lined reference
monitors and a trusted application programming interface for cloud system.

[BKFT11] presents NetODESSA, an inference-based system for network configu-
ration and dynamic policy enforcement. NetODESSA extends the ODESSA distributed
which is a dynamic policy monitoring system. The system allows network administrators
to write policies enforced at the network-level and monitored at the host-level. This ap-
proach is based on Resource Description Framework (RDF), OpenFlow and NOX. The
main idea is to write some abstract high-level policies in term of host characteristics.
Then an inference engine, using data observed from the network, is able to classify the
hosts and thus to determine if violations occur and to take a proper action.

A general view of the accountability life-cycle and the challenges is addresses in [KLP11].
The accountability life cycle is compound of seven steps in a way similar to an iterative
software lifecyle. These steps are: Policy planning, sens and trace, logging, safe keep-
ing of logs, reporting and replaying, auditing, optimizing and recycling. The second
proposition relates to the question of the nature of data to log. The principle is to con-
sider three layers: the workflow, the data and the system layers. The authors consider
three technical approaches to increase accountability: Central Watchdog/ Manager Ser-
vice, Local File Tracking Embedment, and Domain segregation.

One piece of work related to usage control policy enforcement is [HBP05, HPBT07].
This work proposes a general analysis of obligations and a formal language for express-
ing usage control. A discussion is made about enforcement in [HBPO5] but it focuses
on a central monitor. In [PHS*08] the authors focus on mechanism inspired by DRM
system, that is observation mechanism. Such a mechanism has one provider-side that
monitors the consumer-side. The consumer-side signals to the provider-side what are
the actions it is being processed.

The work of Yumerefendi and Chase [YCO04] is a first attempt to define a framework
for accountability. They consider that: "Accountable systems expose interfaces that
allow them to verify the correctness of their actions.” This is not an enforcement tool
support but it is a general framework which has some interesting features. The focus is
to enable accountability for services that access and update internal state in response
to invocations from clients. The foundation of the approach relies on digitally preserv-
ing signed records of actions and internal state snapshots of each service. These kind
of secure logs are then used to detect tampering, or to prove responsibility for unex-
pected states or actions. A more focused and concrete approach by the same authors
is [YCOQ7]. They presents the design and implementation of a network storage service.
The CATS system supports strong accountability and a critical evaluation of its perfor-
mances. This is a simple web services interface that allows clients to read and write

FP7-1CT-2011-8-317550-A4CLOUD Page: 36 of 83

Enforcement Tools, Service Specification and Architectural Design

opaque objects of variable size. However, regarding policy enforcement the proposal
is far from to be generic since the policy to use the create, read and write actions are
predefined by the system. Thus it is not flexible to define new user preferences and new
service obligations.

FP7-1CT-2011-8-317550-A4CLOUD Page: 37 of 83

Bibliography

[Ate]

[BKF+11]

[BOS*13]

[FJWX12]

[Fre08]

[GdOST13]

[HBPO5]

[HER]

Giuseppe Ateniese. Verifiable encryption of digital signatures and applica-
tions. ACM Trans. Inf. Syst. Secur. (TISSEC), (1):1-20.

J. Bellessa, E. Kroske, R. Farivar, M. Montanari, K. Larson, and R.H.
Campbell. Netodessa: Dynamic policy enforcement in cloud networks.
In 30th IEEE Symposium on Reliable Distributed Systems Workshops
(SRDSW), pages 57-61, 2011.

Karin Bernsmed, Anderson Santana De Oliveira, Jakub Sendor, Nils Brede
Moe, Thomas Ribsamen, Vasilis Tountopoulos, and Bushra Hasnain. D:B-
3.1: Use Case Descriptions. Technical Report D:B-3.1, Accountability for
Cloud and Future Internet Services - A4Cloud Project, June 2013.

Joan Feigenbaum, Aaron D. Jaggard, Rebecca N. Wright, and
Hongda Xiao. Systematizing “accountability” in computer science.
Technical Report YALEU/DCS/TR-1452, University of Yale, 2012.
www.cs.yale.edu/publications/techreports/tr1452.pdf.

Bruce Frederiksen. Applying expert system technology to code reuse with
pyke. In PyCon, 2008.

Alexandr Garaga, Anderson Santana de Oliveira, Jakub Sendor, Monir
Azraoui, Kaoutar Elkhiyaoui, Melek Onen Refik Molva, Ronan-Alexandre
Cherrueau, Rémi Douence, Hervé Grall, Jean-Claude Royer, Mohamed
Sellami, Mario Stdholt (EMN), and Karin Bernsmed. D:C-4.1: Policy Rep-
resentation Framework. Technical Report D:C-4.1, Accountability for Cloud
and Future Internet Services - A4Cloud Project, 2013.

Manuel Hilty, David A. Basin, and Alexander Pretschner. On obligations. In
Sabrina De Capitani di Vimercati, Paul F. Syverson, and Dieter Gollmann,
editors, Computer Security - ESORICS 2005, 10th European Symposium
on Research in Computer Security, Milan, Italy, September 12-14, 2005,
Proceedings, volume 3679 of Lecture Notes in Computer Science, pages
98-117. Springer, 2005.

HERAS AF team. HERAS AF (Holistic Enterprise-Ready Application Se-
curity Architecture Framework). http://herasaf.org/.

FP7-1CT-2011-8-317550-A4CLOUD Page: 38 of 83

http://herasaf.org/

Enforcement Tools, Service Specification and Architectural Design

[HKK12]

[HPB+07]

[KE10]

[KLP11]

IMT09]

[Ope]

[PHS*08]

[Pri11]

[SAP13]

[SK98]

[TNR11]

Kevin W. Hamlen, Lalana Kagal, and Murat Kantarcioglu. Policy en-
forcement framework for cloud data management. IEEE Data Eng. Bull,
35(4):39-45, 2012.

Manuel Hilty, Alexander Pretschner, David A. Basin, Christian Schaefer,
and Thomas Walter. A policy language for distributed usage control. In
Joachim Biskup and Javier Lopez, editors, ESORICS, volume 4734 of Lec-
ture Notes in Computer Science, pages 531-546. Springer, 2007.

Ronald Knode and Douglas Egan. Digital trust in the cloud:
Into the cloud with ctp — a precis for the cloudtrust protocol,
v2.0. https://cloudsecurityalliance.org/wp-content/uploads/
2011/05/cloudtrustprotocolprecis_073010.pdf, 2010. Cloud Secu-
rity Alliance.

Ryan K. L. Ko, Bu-Sung Lee, and Siani Pearson. Towards achieving ac-
countability, auditability and trust in cloud computing. In Ajith Abraham,
Jaime Lloret Mauri, John F. Buford, Junichi Suzuki, and Sabu M. Thampi,
editors, Advances in Computing and Communications - First International
Conference, ACC 2011, Kochi, India, July 22-24, 2011, Proceedings, Part
1V, volume 193 of Communications in Computer and Information Science,
pages 432—444. Springer, 2011.

Di Ma and Gene Tsudik. A new approach to secure logging. TOS, 5(1),
2009.

OpenStack. OpenStack API reference. http://api.openstack.org/
api-ref.html. [Online, accessed 11-July-2013].

Alexander Pretschner, Manuel Hilty, Florian Schiitz, Christian Schaefer,
and Thomas Walter. Usage control enforcement: Present and future. IEEE
Security & Privacy, 6(4):44-53, July/August 2008.

PrimeLife Consortium. PrimeLife. http://primelife.ercim.eu/, 2011.

SAP. SAP HANA cloud platform. http://scn.sap.com/community/
cloud-platform, 2013.

Bruce Schneier and John Kelsey. Cryptographic support for secure logs on
untrusted machines. In Proceedings of the 7th conference on USENIX Se-
curity Symposium - Volume 7, SSYM’98, pages 4—4, Berkeley, CA, USA,
1998. USENIX Association.

Slim Trabelsi, Gregory Neven, and Dave Raggett. Report on
design and implementation. http://primelife.ercim.eu/
images/stories/deliverables/d5.3.4-report_on_design_and_
implementation-public.pdf, 2011.

FP7-1CT-2011-8-317550-A4CLOUD Page: 39 of 83

https://cloudsecurityalliance.org/wp-content/uploads/2011/05/cloudtrustprotocolprecis_073010.pdf
https://cloudsecurityalliance.org/wp-content/uploads/2011/05/cloudtrustprotocolprecis_073010.pdf
http://api.openstack.org/api-ref.html
http://api.openstack.org/api-ref.html
http://primelife.ercim.eu/
http://scn.sap.com/community/cloud-platform
http://scn.sap.com/community/cloud-platform
http://primelife.ercim.eu/images/stories/deliverables/d5.3.4-report_on_design_and_implementation-public.pdf
http://primelife.ercim.eu/images/stories/deliverables/d5.3.4-report_on_design_and_implementation-public.pdf
http://primelife.ercim.eu/images/stories/deliverables/d5.3.4-report_on_design_and_implementation-public.pdf

Enforcement Tools, Service Specification and Architectural Design

[YCO04] Aydan R. Yumerefendi and Jeffrey S. Chase. Trust but verify: account-
ability for network services. In Proceedings of the 11th workshop on ACM
SIGOPS European workshop, EW 11, New York, NY, USA, 2004. ACM.

[YCO07] Aydan R. Yumerefendi and Jeffrey S. Chase. Strong accountability for net-
work storage. Trans. Storage, 3(3), October 2007.

[YNO9] Attila Altay Yavuz and Peng Ning. Baf: An efficient publicly verifiable secure
audit logging scheme for distributed systems. In ACSAC, pages 219-228.
IEEE Computer Society, 2009.

[YSSdO12] Peng Yu, Jakub Sendor, Gabriel Serme, and Anderson Santana
de Oliveira. Automating privacy enforcement in cloud platforms. In
Roberto Di Pietro, Javier Herranz, Ernesto Damiani, and Radu State, ed-
itors, DPM/SETOP, volume 7731 of Lecture Notes in Computer Science,
pages 160-173. Springer, 2012.

FP7-1CT-2011-8-317550-A4CLOUD Page: 40 of 83

	List of Figures
	Executive Summary
	Introduction to Policy Enforcement Framework
	A General View of Policy Enforcement
	Review of the Existing Enforcement Methodologies
	Obligations Mapping

	Extensions to the Existing Tools and Services
	PPL Engine
	Core Engine Components
	Event and Obligation Handlers

	Interfaces Required for Integration
	Secure Logging
	Evidence Collection
	Audit

	Extended Policy Enforcement Engine Architecture

	Data Transfer Control Toolkit: Architecture and Design for The New Enforcement Tools
	Motivation for Data Transfer Control in the Cloud
	Introduction to Data Transfer Control Toolkit
	Data Tracking Challenges in the Cloud
	Data Tracking Monitors
	SaaS and PaaS Monitoring
	IaaS Monitoring
	Topology
	Accountability Service
	Audit Trails
	Security Considerations

	Conclusions
	Enforcement Methodologies Survey
	References

